13 resultados para AND replication
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)
Resumo:
Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids TFAM plays an important role in mitochondrial transcription and replication TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated However, a function for TFAM in BER has not yet been investigated This study examines the role of TFAM in BER In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase gamma (pol gamma) On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in alpha OGG1 protein levels TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-Induced inhibition of BER proteins Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions Published by Elsevier B V
Resumo:
Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.
Resumo:
Gymnotus cf. carapo and Gynznotus sylvius are two fish species inhabiting the Upper Parana River Basin, presenting respectively 2n =54 and 2n = 40 chromosomes. In the present cytogenetic analysis, R-banding and telomere-sequence hybridization were carried out in order to determine the possible relationship between the karyotipes of these two species. Incorporation bands (R-bands) obtained for the two species allowed the identification of chromosome similarities, showing to be an usefull alternative to the G-banding methods, which fail in producing satisfying results in most of analyzed fish species. This approach, associated with the hybridization of telomeric sequences, permited to identify chromosomal rearrangements that could be used as indicators of karyotypic evolution within the group. In the present case, telomeric sequences were detected in the centromeric region of two metacentric chromosome pairs of Gymnotus sylvius. The results obtained after hybridization with the telomere sequences, coupled with the chromosome homeologies detected by R-banding, showed that G. cf carapo and G. sylvius should present a common ancestor, and this may also be corroborated by the similarities found in three chromosome pairs, that seem to have been conserved during the evolution of the two species. Based on the data here presented we propose that G. sylvius may have undergone a recent process of chromosome fusion that resulted in the diminution of its chromosome number.
Resumo:
Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from similar to 250 kb to similar to 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.
Resumo:
ORF 31 is a unique baculovirus gene in the genome of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D). It encodes a putative polypeptide of 369 aa homologous to poly (ADP-ribose) polymerase (PARP) found in the genomes of several organisms. Moreover, we found a phylogenetic association with Group I PARP proteins and a 3D homology model of its conserved PARP C-terminal catalytic domain indicating that had almost an exact spatial superimposition of < 1 angstrom with other PARP available structures. The 5` end of ORF 31 mRNA was located at the first nucleotide of a CATT motif at position -27. Using real-time PCR we detected transcripts at 3 h post-infection (p.i.) increasing until 24 h p.i., which coincides with the onset of DNA replication, suggestive of a possible role in DNA metabolism.
Resumo:
The genome of the most virulent among 22 Brazilian geographical isolates of Spodoptera frugiperda nucleopolyhedrovirus, isolate 19 (SfMNPV-1 9), was completely sequenced and shown to comprise 132 565 bp and 141 open reading frames (ORFs). A total of 11 ORFs with no homology to genes in the GenBank database were found. Of those, four had typical baculovirus; promoter motifs and polyadenylation sites. Computer-simulated restriction enzyme cleavage patterns of SfMNPV-1 9 were compared with published physical maps of other SfMNPV isolates. Differences were observed in terms of the restriction profiles and genome size. Comparison of SfMNPV-1 9 with the sequence of the SfMNPV isolate 3AP2 indicated that they differed due to a 1427 bp deletion, as well as by a series of smaller deletions and point mutations. The majority of genes of SfMNPV-1 9 were conserved in the closely related Spodoptera exigua NPV (SeMNPV) and Agrotis segetum NPV (AgseMNPV-A), but a few regions experienced major changes and rearrangements. Synthenic maps for the genomes of group 11 NPVs revealed that gene collinearity was observed only within certain clusters. Analysis of the dynamics of gene gain and loss along the phylogenetic tree of the NPVs showed that group 11 had only five defining genes and supported the hypothesis that these viruses form ten highly divergent ancient lineages. Crucially, more than 60% of the gene gain events followed a power-law relation to genetic distance among baculoviruses, indicative of temporal organization in the gene accretion process.
Resumo:
Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coli MBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase. This study shows that meaningful nuclear RNA polymerase II dependent expression of the HRSV nucleoprotein (N) and phosphoprotein (F) proteins can only be achieved with the optimization of their genes, and that the intracellular localization of N and P proteins changes when they are expressed out of the virus replication context. Immunization tests performed in mice resulted in the induction of humoral immunity using the optimized genes. This result was not observed for the non-optimized genes. In conclusion, optimization is a valuable tool for improving expression of HRSV genes in DNA vaccines. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Gamma-linolenic acid (GLA) is an inhibitor of tumor cell proliferation in both in vitro and in vivo conditions. The aim of this study was to investigate the effects of 150 mu M GLA on the expression of E2F1, cyclin D1, bax, bcl2, Ku70, and Ku80 in C6 rat glioma cells. The Ku proteins were chosen as previous studies have shown that loss or reduction in their expression causes increased DNA damage and micronucleus formation in the presence of radiation. The fact that GLA exposure is known to enhance the efficacy of radiation treatment raised the question whether the Ku proteins could be involved in this effect as seen for other molecules such as roscovitine and flavopiridol. GLA altered the mRNA expression of E2F1, cyclin D1, and bax, but no changes were found for bcl2, Ku70, and Ku80. Alterations in protein expression were observed for bax, Ku80, and E2F1. The 45% decrease in E2F1 expression was proportional to decreased cell proliferation (44%). Morphological analysis found a 25% decrease in mitotic activity in the GLA-treated cells, which was accompanied by a 49% decrease in S-phase by FACS analysis. A 39% increase in the number of micronuclei detected by Hoechst fluorescence points to GLA`s effects on cell division even at concentrations that do not produce significant increases in apoptosis. Most important was the finding that Ku80 expression, a critical protein involved in DNA repair as a heterodimer with Ku70, was decreased by 71%. It is probable that reduced Ku80 is responsible for the increase in micronucleus formation in GLA-treated cells in a similar manner to that found in Ku80 null cells exposed to radiation. The decreased expression of Ku80 and E2F1 could make cells more susceptible to radiotherapy and chemotherapy. (C) 2009 IUBMB
Resumo:
The coexistence between different types of templates has been the choice solution to the information crisis of prebiotic evolution, triggered by the finding that a single RNA-like template cannot carry enough information to code for any useful replicase. In principle, confining d distinct templates of length L in a package or protocell, whose Survival depends on the coexistence of the templates it holds in, could resolve this crisis provided that d is made sufficiently large. Here we review the prototypical package model of Niesert et al. [1981. Origin of life between Scylla and Charybdis. J. Mol. Evol. 17, 348-353] which guarantees the greatest possible region of viability of the protocell population, and show that this model, and hence the entire package approach, does not resolve the information crisis. In particular, we show that the total information stored in a viable protocell (Ld) tends to a constant value that depends only on the spontaneous error rate per nucleotide of the template replication mechanism. As a result, an increase of d must be followed by a decrease of L, so that the net information gain is null. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study develops a simplified model describing the evolutionary dynamics of a population composed of obligate sexually and asexually reproducing, unicellular organisms. The model assumes that the organisms have diploid genomes consisting of two chromosomes, and that the sexual organisms replicate by first dividing into haploid intermediates, which then combine with other haploids, followed by the normal mitotic division of the resulting diploid into two new daughter cells. We assume that the fitness landscape of the diploids is analogous to the single-fitness-peak approach often used in single-chromosome studies. That is, we assume a master chromosome that becomes defective with just one point mutation. The diploid fitness then depends on whether the genome has zero, one, or two copies of the master chromosome. We also assume that only pairs of haploids with a master chromosome are capable of combining so as to produce sexual diploid cells, and that this process is described by second-order kinetics. We find that, in a range of intermediate values of the replication fidelity, sexually reproducing cells can outcompete asexual ones, provided the initial abundance of sexual cells is above some threshold value. The range of values where sexual reproduction outcompetes asexual reproduction increases with decreasing replication rate and increasing population density. We critically evaluate a common approach, based on a group selection perspective, used to study the competition between populations and show its flaws in addressing the evolution of sex problem.
Resumo:
Two new complexes of platinum(II) and silver(I) with acesulfame were synthesized. Acesulfame is in the anionic form acesulfamate (ace). The structures of both complexes were determined by X-ray crystallography. For K(2)[PtCl(2)(ace)(2)] the platinum atom is coordinated to two Cl(-) and two N-acesulfamate atoms forming a trans-square planar geometry. Each K(+) ion interacts with two oxygen atoms of the S(=O)(2) group of each acesulfamate. For the polymeric complex [Ag(ace)](n) the water molecule bridges between two crystallographic equivalent Agl atoms which are related each other by a twofold symmetry axis. Two Agl atoms, related to each other by a symmetry centre, make bond contact with two equivalent oxygen atoms. These bonds give rise to infinite chains along the unit cell diagonal in the ac plane. The in vitro cytotoxic analyses for the platinum complex using HeLa (human cervix cancer) cells show its low activity when compared to the vehicle-treated cells. The Ag(I) complex submitted to in vitro antimycobacterial tests, using the Microplate Alamar Blue (MABA) method, showed a good activity against Mycobacterium tuberculosis, responsible for tuberculosis, with a minimal inhibitory concentration (MIC) value of 11.6 mu M. The Ag(I) complex also presented a promising activity against Gram negative (Escherichia colt and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis) microorganisms. The complex K(2)[PtCl(2)(ace)(2)] was also evaluated for antiviral properties against dengue virus type 2 (New Guinea C strain) in Vero cells and showed a good inhibition of dengue virus type 2 (New Guinea G strain) replication at 200 mu M, when compared to vehicle-treated cells. (C) 2010 Elsevier Inc. All rights reserved.