3 resultados para AMELOGENESIS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Variations in genes that are critical for tooth formation may contribute to the tooth agenesis. MMPs are potential candidate genes for dental alterations based on the roles they play during embryogenesis. The aim of this study was to investigate the possible association between MMP1, MMP3, and MMP20 and tooth agenesis. Methods: One hundred sixty-seven nuclear families from two different populations were analysed, 116 from Brazil and 51 from Turkey. Probands had at least one congenitally missing tooth. DNA samples were obtained from blood or saliva samples and genotyping was performed using TagMan chemistry. In addition, Mmp20 was selected for quantitative real-time polymerase chain reaction analysis with SYBR Green I Dye in mouse tooth development. Results: Associations between tooth agenesis and MMP1 (p = 0.007), and MMP20 (p = 0.03) were found in Brazilian families. In the total dataset, MMP20 continued to be associated with tooth agenesis (p = 0.01). Mmp20 was not expressed during the initial stages of tooth development. Conclusion: Our findings provide evidence that MMP1 and MMP20 play a role in human tooth agenesis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.