6 resultados para AMAZONIAN TREE COMMUNITIES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the `varzea` (VZ) floodplains and adjacent non-flooded `terra-firme` (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main nonstructural carbohydrate. Around 93% of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2.5%. In contrast, 74% of the endosperm in TF seeds was composed of galactomannans, while 22% of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution.
Resumo:
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The goal of this study was to understand the relationship between economic change (wage labor, retirement, and the Bolsa Familia program) and dietary patterns in the rural Amazon and to determine the extent to which these changes followed the pattern of the nutrition transition. Methods: The study was longitudinal. The weighed-inventory method and economic interviews were used to collect data on dietary intake and household economics in a sample of 30 and 52 women in 2002 and 2009, respectively. Twenty of the women participated in both years and make-up the longitudinal sub-sample. Comparative statistics were used to identify changes in dietary patterns over time and multiple linear regressions were used to explore the relationship between economics, subsistence strategies, and diet. Results: There was a significant decline in kcal (P < 0.01) and carbohydrate (P < 0.01) but no change in protein intake over time in both the larger and smaller, longitudinal subsample. The percent of energy, carbohydrate, protein, and fat purchased increased in the larger and longitudinal samples (P <= 0.02) and there was an increase in refined carbohydrate and processed, fatty-meat consumption over time. The abandonment of manioc gardens was associated with increased dependence on purchased food (P = 0.03) while receipt of the Bolsa Familia was associated with increased protein intake and adequacy (P = 0.02). Conclusions: The dietary changes observed are only in partial agreement with predictions of the nutrition transition literature. The relationship between the economic and diet changes was shaped by the local context which should be considered when implementing CCT programs, like the Bolsa Familia. Am. J. Hum. Biol. 23:458-469, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Hundreds of tropical plant species house ant colonies in specialized chambers called domatia. When, in 1873, Richard Spruce likened plant-ants to fleas and asserted that domatia are ant-created galls, he incited a debate that lasted almost a century. Although we now know that domatia are not galls and that most ant-plant interactions are mutualisms and not parasitisms, we revisit Spruce`s suggestion that ants can gall in light of our observations of the plant-ant Myrmelachista schumanni, which creates clearings in the Amazonian rain forest called ""supay-chakras,"" or ""devil`s gardens."" We observed swollen scars on the trunks of nonmyrmecophytic canopy trees surrounding supay-chakras, and within these swellings, we found networks of cavities inhabited by M. schumanni. Here, we summarize the evidence supporting the hypothesis that M. schumanni ants make these galls, and we hypothesize that the adaptive benefit of galling is to increase the amount of nesting space available to M. schumanni colonies.
Resumo:
Little follow-up data on malaria transmission in communities originating from frontier settlements in Amazonia are available. Here we describe a cohort study in a frontier settlement in Acre, Brazil, where 509 subjects contributed 489.7 person-years of follow-up. The association between malaria morbidity during the follow-up and individual, household, and spatial covariates was explored with mixed-effects logistic regression models and spatial analysis. Incidence rates for Plasmodium vivax and Plasmodium falciparum malaria were 30.0/100 and 16.3/100 person-years at risk, respectively. Malaria morbidity was strongly associated with land clearing and farming, and decreased after five years of residence in the area, suggesting that clinical immunity develops among subjects exposed to low malaria endemicity. Significant spatial clustering of malaria was observed in the areas of most recent occupation, indicating that the continuous influx of nonimmune settlers to forest-fringe areas perpetuates the cycle of environmental change and colonization that favors malaria transmission in rural Amazonia.