3 resultados para ALPHA-AL2O3
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper presents a systematic comparison of OSL signals from Al(2)O(3):C when stimulated with blue and green light. Al(2)O(3):C detectors were irradiated with various doses and submitted to various bleaching regimes using yellow, green and blue light. Most of the investigations were carried out using Luxel (TM)-type detectors used in the commercial Luxet (TM) and InLight (TM) dosimetry systems (Landauer Inc.). Al(2)O(3):C single crystals and Al(2)O(3):C powder were also used to complement the investigations. The results show that, although blue stimulation provides faster readout times (OSL curves that decayed faster) and higher initial OSL intensity than green stimulation, blue stimulation introduced complicating factors. These include incomplete bleaching of the dosimetric trap when the Al(2)O(3):C detectors are bleached with yellow or green light and the OSL is recorded with blue light stimulation, and an increased residual level due to stimulation of charge carriers from deep traps. The results warrant caution when using blue stimulation to measure the OSL signal from Al(2)O(3):C detectors, particularly if the doses involved are low and the detectors have been previously exposed to high doses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
After the development of the highly sensitive material Al(2)O(3):C, personal dosimetry using optically stimulated luminescence (OSL) has been continuously adopted in place of thermoluminescence dosimeters (TLD) by different countries (e.g. USA and Japan). In order to use a dosimetric system in Brazil it is necessary to develop a protocol and to fulfill performance and type tests in accordance with the accreditation program approved by the responsible governmental committee. This paper presents a proposal for an accreditation program for OSL personal dosimetry using a commercial dosimetric system, including tests that follow the same rules as applied to TLD and film dosimetry. The experimental results are within the reliability interval and in accordance to the expected behavior. A new test concerning re-analysis of exposed badges is also proposed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.