2 resultados para AD-HOC NETWORKS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
For many learning tasks the duration of the data collection can be greater than the time scale for changes of the underlying data distribution. The question we ask is how to include the information that data are aging. Ad hoc methods to achieve this include the use of validity windows that prevent the learning machine from making inferences based on old data. This introduces the problem of how to define the size of validity windows. In this brief, a new adaptive Bayesian inspired algorithm is presented for learning drifting concepts. It uses the analogy of validity windows in an adaptive Bayesian way to incorporate changes in the data distribution over time. We apply a theoretical approach based on information geometry to the classification problem and measure its performance in simulations. The uncertainty about the appropriate size of the memory windows is dealt with in a Bayesian manner by integrating over the distribution of the adaptive window size. Thus, the posterior distribution of the weights may develop algebraic tails. The learning algorithm results from tracking the mean and variance of the posterior distribution of the weights. It was found that the algebraic tails of this posterior distribution give the learning algorithm the ability to cope with an evolving environment by permitting the escape from local traps.
Resumo:
The assessment of routing protocols for mobile wireless networks is a difficult task, because of the networks` dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and some delay tolerant networks (DTNs), have more predictable dynamics, as the temporal variations in the network topology can be considered as deterministic, which may make them easier to study. Recently, a graph theoretic model-the evolving graphs-was proposed to help capture the dynamic behavior of such networks, in view of the construction of least cost routing and other algorithms. The algorithms and insights obtained through this model are theoretically very efficient and intriguing. However, there is no study about the use of such theoretical results into practical situations. Therefore, the objective of our work is to analyze the applicability of the evolving graph theory in the construction of efficient routing protocols in realistic scenarios. In this paper, we use the NS2 network simulator to first implement an evolving graph based routing protocol, and then to use it as a benchmark when comparing the four major ad hoc routing protocols (AODV, DSR, OLSR and DSDV). Interestingly, our experiments show that evolving graphs have the potential to be an effective and powerful tool in the development and analysis of algorithms for dynamic networks, with predictable dynamics at least. In order to make this model widely applicable, however, some practical issues still have to be addressed and incorporated into the model, like adaptive algorithms. We also discuss such issues in this paper, as a result of our experience.