6 resultados para 998
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Footemineite, ideally Ca2Mn2+square Mn22+Be4(PO4)(6)(OH)(4)-6H(2)O, triclinic, is a new member of the roscherite group. It occurs on thin fractures crossing quartz-microcline-spodumene pegmatite at the Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A. Associated minerals are albite, analcime, eosphorite, siderite/rhodochrosite, fairfieldite, fluorapatite, quartz, milarite, and pyrite. Footemineite forms prismatic to bladed generally rough to barrel-shaped crystals up to about 1.5 mm long and I mm in diameter. Its color is yellow, the streak is white, and the luster is vitreous to slightly pearly. Footemineite is transparent and non-fluorescent. Twinning is simple, by reflection, with twin boundaries across the length of the crystals. Cleavage is good on {0 (1) over bar1}) and {100}. Density (calc.) is 2.873 g/cm(3). Footemineite is biaxial (-), n(alpha) = 1.620(2), n(beta) = 1.627(2), n(gamma) = 1.634(2) (white light). 2V(obs) = 80 degrees, 2V(calc) = 89.6 degrees. Orientation: X boolean AND b similar to 12 degrees, Y boolean AND c similar to 15 degrees, Z boolean AND a similar to 15 degrees. Elongation direction is c, dispersion: r > v or r < v, weak. Pleochroism: beta (brownish yellow) > alpha = gamma (yellow). Mossbauer and IR spectra are given. The chemical composition is (EDS mode electron microprobe, Li and Be by ICP-OES, Fe3+:Fe2+ y Mossbauer, H2O by TG data, wt%): Li2O 0.23, BeO 9.54, CaO 9.43, SrO 0.23, BaO 0.24, MgO 0.18, MnO 26.16, FeO 2.77, Fe2O3 0.62, Al2O3 0.14, P2O5 36.58, SiO2 0.42, H2O 13.1, total 99.64. The empirical formula is (Ca1.89Sr0.03Ba0.02)Sigma(1.94)(Mn-0.90(2+)square(0.10))Sigma(1.00)(square 0.78Li0.17Mg0.05) Sigma(1.00)(Mn3.252+Fe0.432+ Fe0.093+Al0.03)Sigma(3.80) Be-4.30(P5.81Si0.08O24)[(OH)3.64(H2O)0.36]Sigma(4.00)center dot 6.00H(2)O . The strongest reflection peaks of the powder diffraction pattern [d, angstrom (1, %) (hkl)] are 9.575 (53) (010), 5.998 (100) (0 (1) over bar1), 4.848 (26) (021), 3.192 (44) (210), 3.003 (14) (0 (2) over bar2), 2.803 (38) ((1) over bar 03), 2.650 (29) ((2) over bar 02), 2.424 (14) (231). Single-crystal unit-cell parameters are a = 6.788(2), b = 9.972(3), c = 10.014(2) A, (x = 73.84(2), beta = 85.34(2), gamma = 87.44(2)degrees,V = 648.74 angstrom(3), Z = 1. The space group is P (1) over bar. Crystal structure was refined to R = 0.0347 with 1273 independent reflections (F > 2(5). Footemineite is dimorphous with roscherite, and isostructural with atencioite. It is identical with the mineral from Foote mine described as ""triclinic roscherite."" The name is for the Foote mine, type locality for this and several other minerals.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.
Resumo:
A new method is presented for spectrophotometric determination of total polyphenols content in wine. The procedure is a modified CUPRAC method based on the reduction of Cu(II), in hydroethanolic medium (pH 7.0) in the presence of neocuproine (2,9-dimethyl-1,10-phenanthroline), by polyphenols, yielding a Cu(I) complexes with maximum absorption peak at 450 nm. The absorbance values are linear (r = 0.998, n = 6) with tannic acid concentrations from 0.4 to 3.6 mu mol L(-1). The limit of detection obtained was 0.41 mu mol L(-1) and relative standard deviation 1.2% (1 mu mol L(-1); n = 8). Recoveries between 80% and 110% (mean value of 95%) were calculated for total polyphenols determination in 14 commercials and 2 synthetic wine samples (with and without sulphite). The proposed procedure is about 1.5 more sensitive than the official Folin-Ciocalteu method. The sensitivities of both methods were compared by the analytical responses of several polyphenols tested in each method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN alpha(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN alpha(2a) analyses in plasma sample were carried out within 25 min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0 MIU mL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN alpha(2a) in plasma samples for therapeutic drug monitoring. (C) 2010 Elsevier B.V. All rights reserved.