2 resultados para 751
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A semi-detailed gravity survey was carried out over an area of 650 km(2) localized in the Eo-Neoproterozoic coastal zone of Paraiba State where 548 new gravity stations were added to the existing database. Gravity measurements were made with a LaCoste and Romberg model G meter with a precision of 0.04 mGal. The altitude was determined by barometric levelling with a fixed base achieving a 1.2 m measure of uncertainty, corresponding to an overall accuracy of 0.24 mGal for the Bouguer anomaly. The residual Bouguer map for a 7th degree regional polynomial showed a circumscribed negative anomaly coincident with a localized aero-magnetic anomaly and with hydro-thermally altered outcrops, near the city of Itapororoca. The 3D gravity modelling, constrained by geologic mapping was interpreted as a low density, fractured and/or altered material with a most probable volume of approximately 23 km(3), extending to about 8,500 m depth. This result is in accordance with a volcanic body associated with hydrothermal processes accompanied by surface mineralization evidence, which may be of interest to the mining industry.
Resumo:
Bi(4-x)La(x)Ti(3)O(12) (BLT) ceramics were prepared and studied in this work in terms of La(3+)-modified microstructure and phase development as well as electrical response. According to the results processed from X-ray diffraction and electrical measurements, the solubility limit (XL) of La(3+) into the Bi(4)Ti(3)O(12) (BIT) matrix was here found to locate slightly above x = 1.5. Further, La(3+) had the effect of reducing the material grain size, while changing its morphology from the plate-like form, typical of BIT ceramics, to a spherical-like one. The electrical results presented and discussed here also include the behavior of the temperature of the ferroelectric-paraelectric phase transition as well as the normal or diffuse and/or relaxor nature of this transition depending on the La(3+) content. (c) 2008 Elsevier Ltd. All fights reserved.