3 resultados para 59-450
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Combined fluid inclusion (FI) microthermometry, Raman spectroscopy, X-ray diffraction, C-O-H isotopes and oxygen fugacities of granulites from central Ribeira Fold Belt, SE Brazil, provided the following results: i) Magnetite-Hematite fO(2) estimates range from 10(-11.5) bar (QFM + 1) to 10(-18.3) bar (QFM - 1) for the temperature range of 896 degrees C-656 degrees C, implying fO(2) decrease from metamorphic peak temperatures to retrograde conditions; ii) 5 main types of fluid inclusions were observed: a) CO(2) and CO(2)-N(2) (0-11 mol%) high to medium density (1.01-0.59 g/cm(3)) FI; b) CO(2) and CO(2)-N(2) (0-36 mol%) low density (0.19-0.29 g/cm(3)) FI; c) CO(2) (94-95 mol%)-N(2) (3 mol%)-CH(4) (2-3 mol%)-H(2)O (water phi(v) (25 degrees C) = 0.1) FI; d) low-salinity H(2)O-CO(2) FI; and e) late low-salinity H(2)O FI; iii) Raman analyses evidence two graphite types in khondalites: an early highly ordered graphite (T similar to 450 degrees C) overgrown by a disordered kind (T similar to 330 degrees C); iv) delta(18)O quartz results of 10.3-10.7 parts per thousand, imply high-temperature CO(2) delta(18)O values of 14.4-14.8 parts per thousand, suggesting the involvement of a metamorphic fluid, whereas lower temperature biotite delta(18)O and delta D results of 7.5-8.5 parts per thousand and -54 to -67 parts per thousand respectively imply H(2)O delta(18)O values of 10-11 parts per thousand and delta D(H2O) of -23 to -36 parts per thousand suggesting delta(18)O depletion and increasing fluid/rock ratio from metamorphic peak to retrograde conditions. Isotopic results are compatible with low-temperature H(2)O influx and fO(2) decrease that promoted graphite deposition in retrograde granulites, simultaneous with low density CO(2), CO(2)-N(2) and CO(2)-N(2)-CH(4)-H(2)O fluid inclusions at T = 450-330 degrees C. Graphite delta(13)C results of -10.9 to -11.4 parts per thousand imply CO(2) delta(13)C values of -0.8 to -1.3 parts per thousand suggesting decarbonation of Cambrian marine carbonates with small admixture of lighter biogenic or mantle derived fluids. Based on these results, it is suggested that metamorphic fluids from the central segment of Ribeira Fold Belt evolved to CO(2)-N(2) fluids during granulitic metamorphism at high fO(2), followed by rapid pressure drop at T similar to 400-450 degrees C during late exhumation that caused fO(2) reduction induced by temperature decrease and water influx, turning carbonic fluids into CO(2)-H(2)O (depleting biotite delta(18)O and delta D values), and progressively into H(2)O. When fO(2) decreased substantially by mixture of carbonic and aqueous fluids, graphite deposited forming khondalites. (C) 2010 Elsevier Ltd. All rights reserved.