5 resultados para 422

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some vocal disorders in teachers are associated with occupational factors, but there are few studies that analyze the influence of vocal habits, fluid intake, mastication, and sleep on these disorders. The objective was to analyze the Occurrence of vocal fatigue, hoarseness, and dry throat in elementary and high school teachers and their association with vocal habits, fluid intake, mastication, and sleep. A sample of 422 elementary and secondary school teachers was Studied using a specific questionnaire. The multiple regression analysis showed that hoarseness was associated with absence of water intake (odds ratio (OR) = 1.7; P = 0.047), yelling/speaking loudly (OR = 1.6; P = 0.058), jaw-opening limitations (OR = 3.8; P = 0.003). average of: 6 hours of sleep/light (OR = 1.7; P = 0.039), and waking-up feeling replenished (OR = 2.0; P = 0.020). The presence of vocal fatigue was significantly associated with yelling/speaking loudly (OR = 2.2: P = 0.013), speaking excessively (OR = 2.4; P = 0.023), difficulty to open the mouth to masticate (OR = 6.6; P = 0.003), less than 6 hours of sleep (OR = 4.0; P = 0.008), and waking-up feeling replenished (sometimes OR = 2.8: P = 0.003; or never OR = 3.3 P = 0.002). The presence of dry throat was associated with being a former smoker (OR = 3.3; P = 0.011) and having jaw-opening limitations (OR = 3.9; P = 0.021). In recent years, speech and hearing interventions with teachers have focused on health-care promotion actions and prevention of vocal disorders, prioritizing issues related with hydration and healthy vocal use habits. However, the findings in the present study show the need to further focus on lifestyle habits related to sleep and eating habits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of the in vitro circadian-like exposure to melatonin [in the presence or absence of insulin (Ins)] on the metabolism and clock gene expression in adipocytes. To simulate the cyclic characteristics of the daily melatonin profile, isolated rat adipocytes were exposed in a circadian-like pattern to melatonin added to the incubating medium for 12 hr (mimicking the night), followed by an equal period without melatonin (mimicking the day) combined or not with Ins. This intermittent incubation was interrupted when four and a half 24-hr cycles were fulfilled. At the end, either during the induced night (melatonin present) or the induced day (melatonin absent), the rates of lipolysis and D-[U-(14)C]-glucose incorporation into lipids were estimated, in addition to the determination of lipogenic [glucose-6-phosphate dehydrogenase and fatty acid synthase (FAS)] and lipolytic (hormone sensitive lipase) enzymes and clock gene (Bmal-1b, Clock, Per-1 and Cry-1) mRNA expression. The leptin release was also measured. During the induced night, the following effects were observed: an increase in the mRNA expression of Clock, Per-1 and FAS; a rise in lipogenic response and leptin secretion; and a decrease in the lipolytic activity. The intermittent exposure of adipocytes to melatonin temporally and rhythmically synchronized their metabolic and hormonal function in a circadian fashion, mimicking what is observed in vivo in animals during the daily light-dark cycle. Therefore, this work helps to clarify the physiological relevance of the circadian pattern of melatonin secretion and its interactions with Ins, contributing to a better understanding of the adipocyte biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brumadoite, ideally Cu(2)Te(6+)O(4)(OH)(4)center dot 5H(2)O, is a new mineral from Pedra Preta mine, Serra das Eguas, Brumado, Bahia, Brazil. It occurs as microcrystalline aggregates both on and, rarely, pseudomorphous after coarse-grained magnesite, associated with mottramite and quartz. Crystals are platy, subhedral, 1-2 mu m in size. Brumadoite is blue (near RHS 114B), has a pale blue streak and a vitreous lustre. It is transparent to translucent and does not fluoresce. The empirical formula is (Cu(2.90)Pb(0.04)Ca(0.01))(Sigma 2.95) (Te(0.93)(6+)Si(0.05))(Sigma 0.98)O(3.92)(OH)(3.84)center dot 5.24H(2)O. Infrared spectra clearly show both (OH) and H(2)O. Microchemical spot tests using a KI Solution show that brumadoite has tellurium in the 6(+) state. The mineral is monoclinic, P2(1)/m or P2(1). Unit-cell parameters refined from X-ray powder data are a 8.629(2) angstrom, b 5.805(2) angstrom, c 7.654(2) angstrom, beta 103.17(2)degrees, V 373.3(2) angstrom(3), Z = 2. The eight strongest X-ray powder-diffraction lines [d in angstrom, (l),(hkl)] are: 8.432,(100),(100); 3.162,(66),((2) over bar 02); 2.385,(27),(220); 2.291,((1) over bar 12),(22); 1.916,(11),(312); 1.666,(14),((4) over bar 22,114); 1.452,(10), (323, 040); 1.450,(10),(422,403). The name is for the type locality, Brumado, Bahia, Brazil. The new mineral species has been approved by the CNMNC (IMA 2008-028).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.