12 resultados para 298.15 K

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-liquid equilibrium experimental data for refined sunflower seed oil, artificially acidified with commercial oleic acid or commercial linoleic acid and a solvent (ethanol + water), were determined at 298.2 K. This set of experimental data and the experimental data from Cuevas et al.,(1) which were obtained from (283.2 to 333.2) K, for degummed sunflower seed oil-containing systems were correlated using NRTL and UNIQUAC models with temperature-dependent binary parameters. The deviation between experimental and calculated compositions presented average values of (1.13 and 1.41) % for NRTL and UNIQUAC equations, respectively, indicating that the models were able to correctly describe the behavior of compounds under different temperature and solvent hydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption isotherms for the removal of linoleic acid from aqueous ethanol were measured using a strong anion exchange resin (Amberlyst A26 OH). The data for linoleic acid were compared with previously published results for oleic acid. The equilibrium data were correlated using the Langmuir and Freundlich isotherms. Lower average deviations between experimental and calculated results were obtained with the Langmuir model. The capacity of the resin for adsorbing linoleic acid was evaluated at different water contents in ethanol, 100 w = 0.50 to 15.27, and at 298.15 K. The water content in ethanol does not influence significantly the equilibrium behavior, and the strong anion exchange resin has a good performance in the removal of linoleic acid from the liquid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New molecular species HSeCl, HClSe, and SeCl were investigated at a high level of theory, CCSD(T), with a series of correlation consistent basis sets with extrapolation to the CBS limit. Account has been taken for valence-only and core-valence correlation effects, and of anharmonic effects on the vibrational frequencies. HSeCl is 43.25 kcal mol (1) more stable than HClSe. A barrier (Delta G(#)) of 47.20 kcal mol (1) separates these species. Internuclear distances are generally overestimated by 0.008 angstrom in the valence-only correlation calculations. Inclusion of anharmonicity leads to much improved vibrational frequencies. For SeCl, we estimate Delta H(f) (0 K) = 23.96 and Delta H(f) (298.15 K) = 24.64 kcal mol (1); for HSeCl, we had 4.20 and 4.97 kcal mol (1), respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CCSD(T) with a series of correlation consistent basis up to quadruple-zeta is used to investigate the structures, vibrational spectra, relative stability, heats of formation, and barrier to isomerization of S=SBr2 and BrSSBr. It represents the most accurate and detailed characterization of these molecules to date. We show that the frequency mode at 302 cm(-1), detected in various studies and assigned to impurities by some authors, and to the anti-symmetric SBr stretch in BrSSBr by others, thus in fact corresponds to the anti-symmetric SBr stretch in the elusive S=SBr2 species; it thus corroborates and complements an earlier partial IR spectra study attributable to S=SBr2. Including corrections for relativistic and core-valence correlation effects, we also predict 26.33 (12.74) kcal/mol for Delta H-f (298.15 K) of S=SBr2 (BrSSBr). For the S=SBr2 -> BrSSBr reaction, our best estimates for the Gibbs free energy and the enthalpy of the reaction at 298.15 K are -13.71 and -13.44 kcal/mol, respectively. For a value of Delta G(#) equal to 23.52 kcal/mol, we estimate a TST rate constant, at 298.15 K, of 3.57 x 10(-5) s(-1). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents liquid-liquid experimental data for systems composed of sunflower seed oil, ethanol and water from 10 to 60 degrees C. The influence of process variables (temperature (T) and water concentration in the solvent (W)) on both the solvent content present in the raffinate (S(RP)) and extract (S(EP)) phases and the partition of free fatty acids (k(2)) was evaluated using the response surface methodology, where flash calculations were performed for each trial using the UNIQUAC equation. Water content in the solvent was the most important factor on the responses of S(EP) and k(2). Additionally, statistical analysis showed that the S(RP) was predominantly affected by temperature factor for low water content in the solvent. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L-1) than in its absence (93 mu mol L-1). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.