62 resultados para 2024 aluminum alloy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum sheets are currently produced by the direct-chill process (DC). The need for low-cost aluminum sheets is a challenge for the development of new materials produced by the twin roll caster (TRC) process. It is expected that sheets produced from these different casting procedures will differ in their microstructure. These differences in microstructure and in the crystallographic texture have great impact on sheet mechanical properties and formability. The present study investigated microstructure and evaluated texture of two strips of Al-Mn-Fe-Si (3003) aluminum alloy produced by TRC and by hot-rolling processes. It was possible to notice that the microstructure, morphology, and grain size of the TRC sample were more homogenous than those found in hot-rolled samples. Both strips, obtained by the two processes, showed strong texture gradient across the thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical characteristics of the AA2024 aluminium alloy modified with octadecyltrimethoxysilane (ODTMS) + polyaniline (PANi) and propiltrimethoxysilane (PTMS) + (PANi) were studied in the present work. The results show that the different protective coatings shift the values of corrosion and pit potentials to more positive values making the system nobler and indicate that the double film ODTMS + PANi present the best protection against corrosion characteristics, that is probably due to the two contributions: anodic protection associated with the barrier effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the performance of bis-1, 2-(triethoxysilyl) ethane (BTSE) as a pre-treatment to protect the AA 2024-T3 against corrosion has been investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, and the scanning vibrating electrode technique (SVET). The microstructural and morphological characterizations were carried out via scanning electron microscopy and atomic force microscopy and the chemical composition evaluated using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The electrochemical results showed that the additives improved the anticorrosion properties of the coating. The chemical characterization indicated that additives contribute to an increased degree of surface coverage, as well as to a more complete reticulation. The SVET results evidenced the self-healing abilities of Ce ions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs) in its microstructure. In this work the corrosion behaviour of AA 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. TEM/EDS observations on non-corroded samples evidenced the heterogeneous composition within the IMs. In addition, SEM observations showed that intermetallics with the same nominal composition present different reactivity, and that both types of coarse IMs normally found in the alloy microstructure are prone to corrosion. Moreover, EDS analyses showed important compositional changes in corroded IMs, evidencing a selective dissolution of their more active constituents, and the onset of an intense oxygen peak, irrespective to the IM nature, indicating the formation of corrosion products. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the last few years great efforts have been made in order to find and to develop environmentally friendly substitutes for Cr6+ pre-treatments applied on aluminium alloys used in the aircraft industry. Among the potential substitutes, silane layers have attracted considerable interest from researchers and from the industry. The present work investigates the anti-corrosion behaviour of (bis-1, 2-(triethoxysilyl) ethane (BTSE)) silane layers modified with Ce ions and/or silica nanoparticles applied on Al alloy 2024-T3 substrates. The corrosion behaviour was investigated in 0.1 M NaCl solution via d.c. polarization and electrochemical impedance spectroscopy (EIS). Contact angle measurements and XPS were used to assess information on the chemistry of the silane pre-treated surfaces. The results have shown that the introduction of additives improves the corrosion protection properties of the silane layer. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that striation spacing may be related to the crack growth rate, da/dN, through Paris equation, as well as the maximum and minimum loads under service loading conditions. These loads define the load ratio, R, and are considered impossible to be evaluated from the inter-spacing striations analysis. In this way, this study discusses the methodology proposed by Furukawa to evaluate the maximum and minimum loads based on the experimental fact that the relative height of a striation, H, and the striation spacing, s, are strongly influenced by the load ratio, R. Fatigue tests in C(T) specimens were conducted on SAE 7475-T7351 Al alloy plates at room temperature and the results showed a straightforward correlation between the parameters H, s, and R. Measurements of striation height, H, were performed using scanning electron microscopy and field emission gun (FEG) after sectioning the specimen at a large inclined angle to amplify the height of the striations. The results showed that for increasing R the values of H/s tend to increase. Striation height, striation spacing, and load ratio correlations were obtained, which allows one to estimate service loadings from fatigue fracture surface survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive set of experiments was performed on a semi-solid A356 alloy in order to assess its flow behavior, mechanical properties, microstructural evolution and porosity level. Three different microstructural conditioning techniques (raw material preparation) were employed: deformation recrystallization, magnetohydrodynamic stirring and low temperature pouring. Measurement of microstructural parameters such as Al-alpha particle size, shape factor, contiguity and entrapped liquid showed a relative equivalency among the various conditioning techniques. It was found that the strongest influence on semi-solid slurry fluidity is exerted by the mould temperature. Tensile properties and porosity levels were measured on a demonstration part produced with different slurry ingate velocities. Results showed similar strength levels among all thixocast samples, a strong correlation between elongation and pore volume fraction and porosity levels much lower than the typical figure for permanent mould or die cast Al-Si alloys. Finally, thermomechanical fatigue tests results were much more favorable to the semi-solid material when compared with the conventionally cast alloy, a result attributed to lower porosity, spheroidal shape of the Al-alpha phase, and refined Si eutectic particles. alpha 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of internal stresses in oxide scales growing on polycrystalline Fe(3)Al alloy in atmospheric air at 700 degrees C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 degrees C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is alpha-Al(2)O(3), with minor quantities of metastable theta-Al(2)O(3) detected in the first minutes of oxidation, as well as alpha-Fe(2)O(3). alpha-Al(2)O(3) grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around -300 MPa. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3402764]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a low alloy steel and a fabrication process were developed to produce U-Bolts for commercial vehicles. Thus, initially five types of no-heat treated steel were developed with different additions of chrome, nickel, and silicon to produce strain hardening effect during cold-forming processing of the U-Bolts, assuring the required mechanical properties. The new materials exhibited a fine perlite and ferrite microstructure due to aluminum and vanadium additions, well known as grain size refiners. The mechanical properties were evaluated in a servo-hydraulic test machine system-MTS 810 according to ASTM A370-03; E739 and E08m-00 standards. The microstructure and fractography analyses of the cold-formed steels were performed by using optical and scanning electronic microscope techniques. To evaluate the performance of the steels and the production process, fatigue tests were carried out under load control (tensile-tensile), R = 0.1 and f = 30 Hz. The Weibull statistic methodology was used for the analysis of the fatigue results. At the end of this work the 0.21% chrome content steel, Alloy 2, presented the best fatigue performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This in vitro study evaluated the influence of the surface pretreatment of a feldspathic ceramic on the shear bond strength of two different resin cements. Background Data: Although several conventional surface treatments have been used on feldspathic ceramic, few studies have investigated the effects of an alternative surface treatment, the association of aluminum oxide sandblasting with Nd:YAG and Er:YAG lasers. Methods: Sixty samples made of a feldspathic ceramic were divided into three groups (n = 20) and treated with (1) controlled-air abrasion with Al(2)O(3) + 10% hydrofluoric acid (HF), (2) Al(2)O(3) + Er:YAG laser, and (3) Al(2)O(3) + Nd:YAG laser. Afterward, silane (Dentsply) was applied on each treated surface. Each of the three main groups was divided into two subgroups (n = 10), where a different resin cement was employed for each subgroup. It was built a cylinder with resin cement (RelyX Arc) in subgroup (A) and with self-adhesive cement (RelyX U100) in subgroup (B). After 24 h at 37 degrees C, the prepared specimens were submitted to shear bond strength test and stereoscopic evaluation to determine the type of failure. Results: Bond strength mean values were not statistically significant for the surface treatment methods or resin cements. Conclusion: The null surface treatment proposed with aluminum oxide sandblasting associated with the Er:YAG or Nd:YAG laser and using cementation with self-adhesive cement can be an alternative bonding technique for feldspathic ceramic, since it was as effective as the conventional treatment with aluminum oxide sandblasting and hydrofluoric acid using the conventional resin cement.