174 resultados para 2-DIMENSIONAL ELECTRON GASES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings ""break'' at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (similar to 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].
Resumo:
We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify and explain two distinct regimes separated by a critical density n(c). Below n(c), the per particle exchange energy is lowered by the contribution of L=1, whereas above n(c) it is increased. As special cases of our general equation we recover various known more limited results for higher fields, and we identify and correct a few inconsistencies in some of these earlier expressions.
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
Purpose. To build nomograms of fetal thyroid circumference (FTC), fetal thyroid area (FTA), and fetal thyroid transverse diameter (FTTD) throughout gestational age (GA). Method. Between January 2006 and July 2006, FTC, FTA, and FTTD were measured once in 196 normal fetuses examined at a GA of 22-35 weeks. Inclusion criteria were a healthy mother with normal maternal thyrotropin level during pregnancy, a singleton pregnancy with normal fetal morphology on sonography, and GA confirmed via first-trimester sonographic examination. Results. Mean FTC, FTA, and FTTD ranged from 3.21 cm, 0.58 cm(2), and 1.19 cm at 22 weeks to 5.11 cm, 1.69 cm(2), and 1.89 cm at 35 weeks, respectively. Linear regression analysis yielded the following formulas for FTC, FTA, and FTTD according to GA: FTC (cm) = 0.146 X GA (weeks); FTA (cm(2)) = -1.289 + 0.085 X GA (weeks); FTTD (cm) = 0.054 X GA (weeks). The following logarithmic formulas were obtained for the expected fetal thyroid measurements according to estimated fetal weight (FW): FTC (cm) = -4.791 + 1.265 X logN FW; FTA (cm(2)) = -1.676 + 0.455 X logN FW; and FTTD (cm) = 0.399 + 0.001 X logN FW. Conclusion. We describe new nomograms of fetal thyroid measurements throughout gestation that may be useful in case of thyroid dysfunction. (C) 2008 Wiley Periodicals, Inc.
Resumo:
The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.
Resumo:
Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.
Resumo:
Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.
Resumo:
The photoluminescence (PL) technique as a function of temperature and excitation intensity was used to study the optical properties of multiquantum wells (MQWs) of GaAs/Al(x)Ga(1-x)As grown by molecular beam epitaxy on GaAs substrates oriented in the [100], [311]A, and [311]B directions. The asymmetry presented by the PL spectra of the MQWs with an apparent exponential tail in the lower-energy side and the unusual behavior of the PL peak energy versus temperature (blueshift) at low temperatures are explained by the exciton localization in the confinement potential fluctuations of the heterostructures. The PL peak energy dependence with temperature was fitted by the expression proposed by Passler [Phys. Status Solidi B 200, 155 (1997)] by subtracting the term sigma(2)(E)/k(B)T, which considers the presence of potential fluctuations. It can be verified from the PL line shape, the full width at half maximum of PL spectra, the sigma(E) values obtained from the adjustment of experimental points, and the blueshift maximum values that the samples grown in the [311]A/B directions have higher potential fluctuation amplitude than the sample grown in the [100] direction. This indicates a higher degree of the superficial corrugations for the MQWs grown in the [311] direction. (C) 2008 American Institute of Physics.