96 resultados para 1D Bose gas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The interest in attractive Bose-Einstein Condensates arises due to the chemical instabilities generate when the number of trapped atoms is above a critical number. In this case, recombination process promotes the collapse of the cloud. This behavior is normally geometry dependent. Within the context of the mean field approximation, the system is described by the Gross-Pitaevskii equation. We have considered the attractive Bose-Einstein condensate, confined in a nonspherical trap, investigating numerically and analytically the solutions, using controlled perturbation and self-similar approximation methods. This approximation is valid in all interval of the negative coupling parameter allowing interpolation between weak-coupling and strong-coupling limits. When using the self-similar approximation methods, accurate analytical formulas were derived. These obtained expressions are discussed for several different traps and may contribute to the understanding of experimental observations.
Resumo:
We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE) for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy parameter for the potential. The spectrum of the GPE is also discussed.
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond the Thomas-Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive a generalized nonlinear Schrodinger equation with a kinetic term for the rotating condensate. In comparison with previous calculations, based on the Thomas-Fermi approximation, significant improvements are found in regions where the condensate in a trap potential is not smooth. The critical angular velocity of the vortex formation is higher than in the Thomas-Fermi prediction.
Resumo:
A technique is proposed for creating nonground-state Bose-Einstein condensates in a trapping potential by means of the temporal modulation of atomic interactions. Applying a time-dependent spatially homogeneous magnetic field modifies the atomic scattering length. A modulation of the scattering length excites the condensate, which, under special conditions, can be transferred to an excited nonlinear coherent mode. It is shown that a phase-transition-like behavior occurs in the time-averaged population imbalance between the ground and excited states. The application of the technique is analyzed and it is shown that the considered effect can be realized for experimentally available condensates.
Resumo:
We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this Letter we present soliton solutions of two coupled nonlinear Schrodinger equations modulated in space and time. The approach allows us to obtain solitons for a large variety of solutions depending on the nonlinearity and potential profiles. As examples we show three cases with soliton solutions: a solution for the case of a potential changing from repulsive to attractive behavior, and the other two solutions corresponding to localized and delocalized nonlinearity terms, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We describe the experimental apparatus and the methods to achieve Bose-Einstein condensation in 87Rb atoms. Atoms are first laser cooled in a standard double magneto-optical trap setup and then transferred into a QUIC trap. The system is brought to quantum degeneracy selectively removing the hottest atoms from the trap by radio-frequency radiation. We also present the main theoretical aspects of the Bose-Einstein condensation phenomena in atomic gases.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.
Resumo:
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.