3 resultados para 1543
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Resumo:
Mycoplasma arthritidis causes autoimmune arthritis in rodents. It produces a superantigen (MAM) that simultaneously activates antigen presenting cells and T cells inducing nitric oxide and cytokine release. Nitric oxide is a key inducer and regulator of the immune system activation. Here, we investigated nitric oxide and cytokine production and interactions of these molecules in MAM-stimulated co-cultures of macrophages (J774A.1 cell line) with spleen lymphocytes. We found that: a) MAM-induced nitric oxide, interferon-gamma, membrane-associated tumor necrosis factor and interleukin-2 production in co-cultures of macrophages with lymphocytes from BALB/c and C3H/HePas but not from C57B1/6 mice; b) production of nitric oxide was dependent on interferon-gamma whereas that of interferon-gamma was dependent on interleukin-2 and membrane-associated tumor necrosis factor; c) these cytokines up regulated MAM-induced nitric oxide production. Unraveling the mechanisms of cell activation induced by MAM might be helpful to design strategies to prevent immune system activation by superantigens and therefore in seeking amelioration of associated immunopathologies. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
International carbon credit markets are based in differences between developing and developed countries greenhouse gases emissions mitigation costs and technological limits faced by developed countries. Potential of energy efficiency measures to reduce fossil fuel usage in Brazilian industrial segments is assessed, and analysis of such potentials singles out those segments and regions more apt to generate carbon credits through Clean Development Mechanism (CDM) projects. Though there are currently few Brazilian CDM projects, their number may be significantly increased, which is a positive outcome. For this purpose, it is crucial that energy conservation programs estimate how CDM may improve their economic competitiveness.