10 resultados para 020108 Planetary Science (excl. Extraterrestrial Geology)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Barrier development during the Holocene is studied using the example of the Ilha Comprida, Southeastern Brazil. Aerial photos, facies analysis, and optically stimulated luminescence dating are used to define the barrier emergence and evolution. Optically stimulated luminescence ages and facies successions indicate that the Ilha Comprida probably began as a Holocene transgressive barrier island 6000 years ago, just before the last relative sea-level maximum. Since then the barrier has progradated through the addition of curved beach ridges. Based on beach ridge alignments, six units of growth are identified with two growth directions, transverse and longitudinal. Rates of progradation with transverse growth vary from 0.13 to 4.6 m/year. Rates of longitudinal growth to NE range from 5.2 to 30 m/year. Variation in coastal progradation rates and sediment retention during the last 6000 years is compared with climate, physiography and relative sea-level changes. The physiography, represented by pre-Cenozoic hills, is the major control on sediment retention and alternation between longitudinal and transverse growth. Climate variations, such as the Little Ice Age event, apparently control the formation of ridges types: beach ridges, foredunes, and blowouts. These results allow the use of the Ilha Comprida Barrier as an example to analyze the major controls on barriers progradation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Back-scattered imaging, X-ray element mapping and electron microprobe analyzer (EMPA) chemical dating reveal complex compositional and age zoning in monazite crystals from different layers and textural positions in a garnet-bearing migmatite in SE Brazil. Y-rich (variable Y(2)O(3), averaging 2.5 wt.%) relict cores are preserved in mesosome and melanosome monazite, and correspond to 793 +/- 6 Ma inherited crystals possibly generated in a previous metamorphic event. These cores are overgrown and widely replaced by two generations of monazite, which are present in all migmatite layers. The first, also Y-rich (average 2.5 wt.% Y(2)O(3)), was produced at similar to 635 Ma during prograde metamorphism under subsolidus conditions, while the second has an Y-poor (<1.5 wt.% Y(2)O(3)), low Th/U signature, and precipitated from low Y and HREE anatectic melts produced by reactions in which garnet was inert. Quartz-rich trondhjemitic leucosome represents lower temperature melt (bearing some subsolidus quartz and garnet with included monazite) formed at temperatures below muscovite breakdown; its Y-poor monazite indicates an age of 617 +/- 6 Ma. Granitic leucosomes formed close to peak metamorphic conditions (T>750 degrees C) above muscovite breakdown have their slightly younger character confirmed by a 609 +/- 7 Ma low-Y monazite age. A similar 606 +/- 5 Ma age was obtained for low-Y monazite rims and domains in mesosome and melanosome, and reflects the time of monazite saturation in interstitial granitic melt that was trapped in these layers. Our results confirm that inherited monazite crystals can be preserved during partial melting at temperatures above muscovite breakdown. Moreover, careful textural control aided by X-ray chemical mapping may allow monazite generated at different stages in a similar to 25 Myr prograde metamorphic path to be identified and dated using an electron microprobe. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Stratigraphic intervals characterized by varied and complex styles of soft-sediment deformation structures are well preserved in Miocene and Late Pleistocene to Holocene deposits of a sedimentary basin located in Northeastern Brazil. The Miocene strata, represented by the Barreiras Formation, record only brittle structures, including numerous faults and fractures with straight and high angle-dipping planes that are often filled with sands derived from overlying beds. Folds consisting of broad anticlines and synclines are also present in this unit. The late Pleistocene to Holocene deposits, named Post-Barreiras Sediments, contain an indurated sandy package with a large variety of ductile and brittle deformation structures (i.e., massive sandstones with isolated sand fragments and breccias, undulatory strata, sand dykes and diapirs, sinks and bowls, pebbly pockets, plunged sediment mixtures, fitted sand masses, cone-shaped cracks, fault grading and sedimentary enclaves). These features, confined to sharp-based stratigraphic horizons that progressively grade downward into undisturbed deposits, are related to seismic shocks of high surface-wave magnitude (i.e., Ms>5 or 6). Amalgamated seismites suggest that previously formed seismites were affected by subsequent seismic-wave propagation. Seismic waves caused by activity along one, or most likely, several tectonic structures would have propagated throughout the depositional environment, producing laterally extensive seismites. The close proximity to earthquake epicenters would have promoted pervasive re-sedimentation due to pore overpressure, resulting high volumes of massive sandstones and breccia. The similarity between deposits with correlatable strata from many other areas along the Brazilian coast allows raise the hypothesis that the seismic episodes might have affected sedimentation patterns in a large (i.e., extension of several hundreds of kilometers) geographic area. Thus, the modern seismicity recorded along Northeastern Brazil was recurrent during the Quaternary and, perhaps, also in the Pliocene. The estimated high magnitude of the seismic events and the great regional extent of the affected area demonstrate that the Brazilian coast experienced tectonic stress through the last geological episodes of its evolution, which would have favored sediment accumulation and penecontemporaneous re-sedimentation. This geological context is unexpected in a passive margin, inducing to revisit the debate on how active is a passive margin. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Most existing models for the evolution of rift basins predict the development of deep-water depositional systems during the stage of greatest tectonic subsidence, when accommodation generation potentially outpaces sedimentation. Despite this, some rift basins do not present deep-water systems, instead being dominated by subaerial deposits. This paper focuses on one of these particular rift basins, the Cambrian Guaritas Rift, Southern Brazil, characterized by more than 1500 m of alluvial and aeolian strata deposited in a 50-km-wide basin. The deposits of the Guaritas Rift can be ascribed to four depositional systems: basin-border alluvial fans, bedload-dominated ephemeral rivers, mixed-load ephemeral rivers and aeolian dune fields. These four systems are in part coeval and in part succeed each other, forming three stages of basin evolution: (i) Rift Initiation to Early Rift Climax stage, (ii) Mid to Late Rift Climax stage, and (iii) Early Post-Rift stage. The first stage comprises most of the Guaritas Group and is characterized by homogeneous bed-load-dominated river deposits, which do not clearly record the evolution of subsidence rates. The onset of sedimentation of finer-grained deposits occurred as a consequence of a reactivation event that changed the outline of the basin and the distribution of the nearby highlands. This strongly suggests that the capture of the main river system to another depression decreased the sediment supply to the basin. The study of the Guaritas Rift indicates that rift basins in which the sediment supply exceeds the accommodation generation occur as a consequence of moderate subsidence combined with the capture of a major river system to the basin during the initial stages of basin evolution. In these basins, changes in the average discharge of the river system or tectonic modification of the drainage network may be the major control on the stratigraphic architecture. (c) 2009 Published by Elsevier B.V.
Resumo:
The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the first U-Pb baddeleyite/zircon date for a felsic volcanic rock from the Parana Large Igneous Province in south Brazil. The new date of 134.3 +/- 0.8 Ma for a hypocrystalline Chapeco-type dacite from Ourinhos (northern Parana basin) is an important regional time marker for the onset of flood basalt volcanism in the northern and western portion of the province. The dated dacite was erupted onto basement rocks and is overlain by a high-Ti basalt sequence, interpreted to be correlative with Pitanga basalts elsewhere. This new U-Pb date for the Ourinhos dacite is consistent with the local stratigraphy being slightly older than the few reliable step-heating (40)Ar/(39)Ar dates currently available for overlying high-Ti basalts (133.6-131.5 Ma). This indicates an similar to 3 Ma time span for the building of the voluminous high-Ti lava sequence of the Parana basin. On the other hand, it overlaps the (40)Ar/(39)Ar dates (134.8-134.1 Ma) available for the stratigraphically older low-Ti basalt (Gramado + Esmeralda types) and dacite-rhyolite (Palmas type) sequences from South Brazil, which is consistent with the short-lived character of this volcanism and its rapid succession by the high-Ti sequence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Neodymium and lead isotope values in sediment samples were used to interpret sediment transport and source rocks on the Southeastern South American upper margin. The sediments of the Argentinian margin exhibit an average epsilon(Nd) value of -1.9, indicating the influence of the Andean rocks as sediment sources. Sediments from the Rio de La Plata estuary show an average epsilon(Nd) value of -9.6 which is similar to that of the Southern Brazilian Upper Margin. Finally, sediments of Southeastern Brazil, which are associated with the transport of the Brazil Current exhibit an average epsilon(Nd) of -13.0. The Pb isotope signatures also confirm the differentiation of source rocks in the sedimentation of the study area. In addition, Pb isotopes helped to establish the extent of the influence of the Rio de La Plata on the sedimentation of the Southern Brazilian margin. In terms of Pb isotopes the sediments from the Rio de La Plata estuary and Southern Brazil are more radiogenic than those of Southeastem Brazil and the Argentinian margin. (c) 2007 Elsevier B.V. All rights reserved.