9 resultados para S°, expressed as SO3

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical coupling provided by connexins (Cx) in gap junctions (GJ) plays important roles in both the developing and the mature retina. In mammalian nocturnal species, Cx36 is an essential component in the rod pathway, the retinal circuit specialized for night, scotopic vision. Here, we report the expression of Cx36 in a species (Gallus gallus) that phylogenetic development endows with an essentially rodless retina. Cx36 gene is very highly expressed in comparison with other Cxs previously described in the adult retina, such as Cx43, Cx45, and Cx50. Moreover, real-time PCR, Western blot, and immunofluorescence all revealed that Cx36 expression massively increased over time during development. We thoroughly examined Cx36 in the inner and outer plexiform layers, where this protein was particularly abundant. Cx36 was observed mainly in the off sublamina of the inner plexiform layer rather than in the on sublamina previously described in the mammalian retina. In addition, Cx36 colocalized with specific cell markers, revealing the expression of this protein in distinct amacrine cells. To investigate further the involvement of Cx36 in visual processing, we examined its functional regulation in retinas from dark-adapted animals. Light deprivation markedly up-regulates Cx36 gene expression in the retina, resulting in an increased accumulation of the protein within and between cone synaptic terminals. In summary, the developmental regulation of Cx36 expression results in particular circuitry-related roles in the chick retina. Moreover, this study demonstrated that Cx36 onto- and phylogenesis in the vertebrate retina simultaneously exhibit similarities and particularities. J. Comp. Neurol. 512:651-663, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA binding proteins regulate gene expression at the posttranscriptional level and play important roles in embryonic development. Here, we report the cloning and expression of Samba, a Xenopus hnRNP that is maternally expressed and persists at least until tail bud stages. During gastrula stages, Samba is enriched in the dorsal regions. Subsequently, its expression is elevated only in neural and neural crest tissues. In the latter, Samba expression overlaps with that of Slug in migratory neural crest cells. Thereafter, Samba is maintained in the neural crest derivatives, as well as other neural tissues, including the anterior and posterior neural tube and the eyes. Overexpression of Samba in the animal pole leads to defects in neural crest migration and cranial cartilage development. Thus, Samba encodes a Xenopus hnRNP that is expressed early in neural and neural crest derivatives and may regulate crest cells migratory behavior. Developmental Dynamics 238:204-209, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is caused by mutation of the autoimmune regulator (AIRE) gene, is a highly variable disease characterized by multiple endocrine failure, chronic mucocutaneous candidiasis, and various ectodermal defects. AIRE is a transcriptional regulator classically expressed in medullary thymic epithelial cells, monocytes, macrophages, and dendritic cells. Previous studies have suggested that AIRE can shuttle between the nucleus and cytoplasm of cells, although its cytoplasmic functions are poorly characterized. Through mass spectrometry analysis of proteins co-immunoprecipitating with cytoplasmic AIRE, we identified a novel association of AIRE with the intermediate filament protein cytokeratin 17 (K17) in the THP-1 monocyte cell line. We confirmed AIRE expression in HaCaT epidermal keratinocytes, as well as its interaction with K17. Confocal microscopy of human fetal and adult scalp hair follicles demonstrated a cytoplasmic pattern of AIRE staining that moderately colocalized with K17. The cytoplasmic association of AIRE with the intermediate filament network in human epidermal and follicular keratinocytes may provide a new path to understanding the ectodermal abnormalities associated with the APECED syndrome. (Am J Pathol 2011, 178:983-988; DOI: 10.1016/j.ajpath.2010.12.007)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural diversity of the eft operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the eft operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-L-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RTPCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.