3 resultados para Échappée belle
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The study was undertaken to evaluate changes in the activity of adenosine deaminase (ADA) in brains of rats infected by Trypanosoma evansi. Each rat was intraperitoneally infected with 10(6) trypomastigotes either suspended in fresh (group A; n = 13) and cryopreserved blood (group B; n = 13). Thirteen animals were used as control (group C). ADA activity was estimated in the cerebellum, cerebral cortex, striatum and hippocampus. No differences (P > 0.05) in ADA activity were observed in the cerebellum between infected and non-infected animals. Significant (P < 0.05) reductions in ADA activity occurred in cerebral cortex in acutely (day 4 post-infection; PI) and chronically (day 20 PI) infected rats. ADA activity was significantly (P < 0.05) decreased in the hippocampus in acutely infected rats, but significantly (P < 0.05) increased in the chronically infected rats. Significant (P < 0.05) reductions in ADA activity occurred in the striatum of chronically infected rats. Parasites could be found in peripheral blood and brain tissue through microscopic examination and PCR assay, respectively, in acutely and chronically infected rats. The reduction of ADA activity in the brain was associated with high levels of parasitemia and anemia in acute infections. Alterations in ADA activity of the brain in T. evansi-infected rats may have implications for pathogenesis of the disease. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the last years many states in the charmonium mass region were discovery by BABAR, Belle and CDF collaborations I discuss some of these discoveries, and how the QCD Sum Rule approach can be used to understand the structure of these states
Resumo:
Using the QCD sum rules we test if the new narrow structure, the X(4350) recently observed by the Belle Collaboration, can be described as a J(PC) = 1(-+) exotic D(s)(*)D(s0)(*) molecular state. We consider the contributions of condensates up to dimension eight, we work at leading order in alpha(s) and we keep terms which are linear in the strange quark mass Ins. The mass obtained for such state is m(Ds*Ds0*) = (5.05 +/- 0.19) GeV. We also consider a molecular 1(-+), D(s)(*)D(s0)(*); current and we obtain m(D*D0*) = (4.92 +/- 0.08) GeV. We conclude that it is not possible to describe the X(4350) structure as a 1(-+) D(s)(*)D(s0)(*) molecular state. (C) 2010 Elsevier B.V. All rights reserved.