3 resultados para <2 µm, >9 phi

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combined fluid inclusion (FI) microthermometry, Raman spectroscopy, X-ray diffraction, C-O-H isotopes and oxygen fugacities of granulites from central Ribeira Fold Belt, SE Brazil, provided the following results: i) Magnetite-Hematite fO(2) estimates range from 10(-11.5) bar (QFM + 1) to 10(-18.3) bar (QFM - 1) for the temperature range of 896 degrees C-656 degrees C, implying fO(2) decrease from metamorphic peak temperatures to retrograde conditions; ii) 5 main types of fluid inclusions were observed: a) CO(2) and CO(2)-N(2) (0-11 mol%) high to medium density (1.01-0.59 g/cm(3)) FI; b) CO(2) and CO(2)-N(2) (0-36 mol%) low density (0.19-0.29 g/cm(3)) FI; c) CO(2) (94-95 mol%)-N(2) (3 mol%)-CH(4) (2-3 mol%)-H(2)O (water phi(v) (25 degrees C) = 0.1) FI; d) low-salinity H(2)O-CO(2) FI; and e) late low-salinity H(2)O FI; iii) Raman analyses evidence two graphite types in khondalites: an early highly ordered graphite (T similar to 450 degrees C) overgrown by a disordered kind (T similar to 330 degrees C); iv) delta(18)O quartz results of 10.3-10.7 parts per thousand, imply high-temperature CO(2) delta(18)O values of 14.4-14.8 parts per thousand, suggesting the involvement of a metamorphic fluid, whereas lower temperature biotite delta(18)O and delta D results of 7.5-8.5 parts per thousand and -54 to -67 parts per thousand respectively imply H(2)O delta(18)O values of 10-11 parts per thousand and delta D(H2O) of -23 to -36 parts per thousand suggesting delta(18)O depletion and increasing fluid/rock ratio from metamorphic peak to retrograde conditions. Isotopic results are compatible with low-temperature H(2)O influx and fO(2) decrease that promoted graphite deposition in retrograde granulites, simultaneous with low density CO(2), CO(2)-N(2) and CO(2)-N(2)-CH(4)-H(2)O fluid inclusions at T = 450-330 degrees C. Graphite delta(13)C results of -10.9 to -11.4 parts per thousand imply CO(2) delta(13)C values of -0.8 to -1.3 parts per thousand suggesting decarbonation of Cambrian marine carbonates with small admixture of lighter biogenic or mantle derived fluids. Based on these results, it is suggested that metamorphic fluids from the central segment of Ribeira Fold Belt evolved to CO(2)-N(2) fluids during granulitic metamorphism at high fO(2), followed by rapid pressure drop at T similar to 400-450 degrees C during late exhumation that caused fO(2) reduction induced by temperature decrease and water influx, turning carbonic fluids into CO(2)-H(2)O (depleting biotite delta(18)O and delta D values), and progressively into H(2)O. When fO(2) decreased substantially by mixture of carbonic and aqueous fluids, graphite deposited forming khondalites. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on the size, shape, structure, and interactions of lysozyme in the ternary system lysozyme/DMSO/water at low protein concentrations. Three structural regimes have been identified, which we term the ""folded"" (0 < phi(DMSO) < 0.7), ""unfolded"" (0.7 <= phi(DMSO) < 0.9), and ""partially collapsed"" (0.9 <= phi(DMSO) < 1.0) regime. Lysozyme resides in a folded conformation with an average radius of gyration of 1.3 +/- 0.1 nm for phi(DMSO) < 0.7 and unfolds (average R(g) of 2.4 +/- 0.1 nm) above phi(DMSO) > 0.7. This drastic change in the protein`s size coincides with a loss of the characteristic tertiary structure. It is preceded by a compaction of the local environment of the tryptophan residues and accompanied by a large increase in the protein`s overall flexibility. In terms of secondary structure, there is a gradual loss of alpha-helix and concomitant increase of beta-sheet structural elements toward phi(DMSO) = 0.7, while an increase in phi(DMSO) at even higher DMSO volume fractions reduces the presence of both a-helix and beta-sheet secondary structural elements. Protein-protein interactions remain overall repulsive for all values of phi(DMSO) An attempt is made to relate these structural changes to the three most important physical mechanisms that underlie them: the DMSO/water microstructure is strongly dependent on the DMSO volume fraction, DMSO acts as a strong H-bond acceptor, and DMSO is a bad solvent for the protein backbone and a number of relatively polar side groups, but a good solvent for relatively apolar side groups, such as tryptophan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.