202 resultados para reflection coefficient
Resumo:
We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.
Resumo:
We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.
Resumo:
We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic structures by using cold atoms trapped in a laser standing wave. By a fine-tuning of the periodicity, we reach the regime of multiple reflection due to the refractive index contrast between layers, yielding an unprecedented high reflectance efficiency of 80%. This result is explained by the occurrence of a photonic band gap in such systems, in accordance with previous predictions.
Resumo:
Online music databases have increased significantly as a consequence of the rapid growth of the Internet and digital audio, requiring the development of faster and more efficient tools for music content analysis. Musical genres are widely used to organize music collections. In this paper, the problem of automatic single and multi-label music genre classification is addressed by exploring rhythm-based features obtained from a respective complex network representation. A Markov model is built in order to analyse the temporal sequence of rhythmic notation events. Feature analysis is performed by using two multi-variate statistical approaches: principal components analysis (unsupervised) and linear discriminant analysis (supervised). Similarly, two classifiers are applied in order to identify the category of rhythms: parametric Bayesian classifier under the Gaussian hypothesis (supervised) and agglomerative hierarchical clustering (unsupervised). Qualitative results obtained by using the kappa coefficient and the obtained clusters corroborated the effectiveness of the proposed method.
Resumo:
We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3-mu m channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd: YAG lasers. (c) 2008 Optical Society of America.
Resumo:
The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc(2)), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc(2) + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M(-1) cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc(2) that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc(2), in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.
Resumo:
In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]
Resumo:
A recently developed dual-beam configuration that optimizes the thermal lens technique has been used to obtain the absorption spectrum of pure water from 350 to 528 nm. Our results indicate the minimum linear absorption coefficient smaller than 2 X 10(-5) cm(-1) between 360 and 400 nm. This value is lower than previous literature data, and it is blueshifted. Absorption coefficients as small as 2 X 10(-7) cm(-1) can be measured for water using 1 W of excitation power. A detection limit of similar to 6 X 10(-9) cm(-1) (P=1 W) for CCl(4) was estimated, which represents, to the best of our knowledge, the highest sensitivity obtained in small absorption measurements in liquids. (C) 2009 Optical Society of America
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
We apply thermal-lens (TL) spectrometry to measure the angular dependence of the TL effect on colquiriite single crystals. The experiments were performed with LiSrAlF(6) and LiSrGaF(6) using a two-beam mode-mismatched configuration. The results show that it is possible to minimize the TL effect by selecting the appropriate crystal orientation. Our data also show that the anisotropy of the linear thermal expansion coefficient drives the amplitude of the TL effect, including the inversion from focusing to defocusing as the crystal orientation angle tends to the c-axis direction. The results may be useful for those working to develop a high-power laser using LiSrAlF(6)(:Cr) and LiSrGaF(6)(:Cr) single crystals, allowing for optimization of the designed laser cavity. (C) 2008 Optical Society of America.
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
Based on solvation studies of polymers, the sum (1: 1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel ""two-parameter"" solvent polarity scale.
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
Direct borohydride fuel cells are promising high energy density portable generators. However, their development remains limited by the complexity of the anodic reaction: The borohydride oxidation reaction (BOR) kinetics is slow and occurs at high overvoltages, while it may compete with the heterogeneous hydrolysis of BH(4)(-). Nevertheless, one usually admits that gold is rather inactive toward the heterogeneous hydrolysis of BH(4)(-) and presents some activity regarding the BOR, therefore yielding to the complete eight-electron BOR. In the present paper, by coupling online mass spectrometry to electrochemistry, we in situ monitored the H(2) yield during BOR experiments on sputtered gold electrodes. Our results show non-negligible H(2) generation on Au on the whole BOR potential range (0-0.8 V vs reversible hydrogen electrode), thus revealing that gold cannot be considered as a faradaic-efficient BOR electrocatalyst. We further propose a relevant reaction pathway for the BOR on gold that accounts for these findings.
Resumo:
We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.