125 resultados para organic mechanism teaching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced sympathetic outflow to the heart and resistance vessels greatly contributes to the onset and maintenance of neurogenic hypertension. There is a consensus that the development of hypertension (clinical and experimental) is associated with an impairment of sympathetic reflex control by arterial baroreceptors. More recently, chronic peripheral chemoreflex activation, as observed in obstructive sleep apnea, has been proposed as another important risk factor for hypertension. In this review, we present and discuss recent experimental evidence showing that changes in the respiratory pattern, elicited by chronic intermittent hypoxia, play a key role in increasing sympathetic activity and arterial pressure in rats. This concept parallels results observed in other models of neurogenic hypertension, such as spontaneously hypertensive rats and rats with angiotensin II-salt-induced hypertension, pointing out alterations in the central coupling of respiratory and sympathetic activities as a novel mechanism underlying the development of neurogenic hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy. Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and beta-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-alpha 2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability. This study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and beta-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that oxidative damage may mediate the loss of dystrophin and beta-dystroglycan in septic mice. These abnormal parameters emerge as therapeutic targets and their modulation may provide beneficial effects on future cardiovascular outcomes and mortality in sepsis. Laboratory Investigation (2010) 90, 531-542; doi: 10.1038/labinvest.2010.3; published online 8 February 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design. MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1 beta (IL-1 beta) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1 beta and MIP-2 exudates was measured by ELISA. Results. MTA induced dose-and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1 beta antibodies. In the exudates, IL-1 beta and MIP-2 were detected. Conclusions. This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1 beta, MIP-2, and LTB(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The civil-military dictatorship, which took power in 1964, influenced the daily activities of schools and teachers. Many transformations occurred during this period, including the new legislation enacted under Law 5692/71 and changes which occurred due to the vigilance which teachers felt when working. The memories analyzed here of teachers from public schools in Sao Paulo show different perceptions of this surveillance, involving various forms of acceptance or resistance. The purpose of this article is to show that although there was no direct repression of schools, unlike in the universities, teachers at the elementary school also felt constrained and this can be seen in their educational practices and teaching concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.