145 resultados para androgen-dependent pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Objective Congenital hypogonadotropic hypogonadism with anosmia (Kallmann syndrome) or with normal sense of smell is a heterogeneous genetic disorder caused by defects in the synthesis, secretion and action of gonadotrophin-releasing hormone (GnRH). Mutations involving autosomal genes have been identified in approximately 30% of all cases of hypogonadotropic hypogonadism. However, most studies that screened patients with hypogonadotropic hypogonadism for gene mutations did not include gene dosage methodologies. Therefore, it remains to be determined whether patients without detected point mutation carried a heterozygous deletion of one or more exons. Measurements We used the multiplex ligation-dependent probe amplification (MLPA) assay to evaluate the potential contribution of heterozygous deletions of FGFR1, GnRH1, GnRHR, GPR54 and NELF genes in the aetiology of GnRH deficiency. Patients We studied a mutation-negative cohort of 135 patients, 80 with Kallmann syndrome and 55 with normosmic hypogonadotropic hypogonadism. Results One large heterozygous deletion involving all FGFR1 exons was identified in a female patient with sporadic normosmic hypogonadotropic hypogonadism and mild dimorphisms as ogival palate and cavus foot. FGFR1 hemizygosity was confirmed by gene dosage with comparative multiplex and real-time PCRs. Conclusions FGFR1 or other autosomal gene deletion is a possible but very rare event and does not account for a significant number of sporadic or inherited cases of isolated GnRH deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Protein kinase (PK) A and the epsilon isoform of PKC (PKC epsilon) are involved in the development of hypernociception (increased sensitivity to noxious or innocuous stimuli) in several animal models of acute and persistent inflammatory pain. The present study evaluated the contribution of PKA and PKC epsilon to the development of prostaglandin E(2) (PGE(2))-induced mechanical hypernociception. Experimental approach: Prostaglandin E(2)-induced mechanical hypernociception was assessed by constant pressure rat paw test. The activation of PKA or PKC epsilon was evaluated by radioactive enzymic assay in the dorsal root ganglia (DRG) of sensory neurons from the hind paws. Key results: Hypernociception induced by PGE(2) (100 ng) by intraplantar (i.pl.) injection, was reduced by i.pl. treatment with inhibitors of PKA [A-kinase-anchoring protein St-Ht31 inhibitor peptide (AKAPI)], PKC epsilon (PKC epsilon I) or adenylyl cyclase. PKA activity was essential in the early phase of the induction of hypernociception, whereas PKC activity was involved in the maintenance of the later phase of hypernociception. In the DRG (L4-L5), activity of PKA increased at 30 min after injection of PGE(2) but PKC activity increased only after 180 min. Moreover, i.pl. injection of the catalytic subunit of PKA induced hypernociception which was markedly reduced by pretreatment with an inhibitor of PKC epsilon, while the hypernociception induced by paw injection of PKC epsilon agonist was not affected by an inhibitor of PKA (AKAPI). Conclusions and implications: Taken together, these findings are consistent with the suggestion that PKA activates PKC epsilon, which is a novel mechanism of interaction between these kinases during the development of PGE(2)-induced mechanical hypernociception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cavernosal tissue is highly responsive to endothelin-1 (ET-1), and penile smooth muscle cells not only respond to but also synthesize ET-1. Considering that ET-1 is directly involved in end-organ damage in salt-sensitive forms of hypertension, we hypothesized that activation of the ET-1/ET(A) receptor pathway contributes to erectile dysfunction (ED) associated with mineralocorticoid hypertension. Wistar rats were uninephrectomized and submitted to deoxycorticosterone acetate (DOCA)-salt treatment for 5 weeks. Control (Uni [uninephrectomized control]) animals were uninephrectomized and given tap water. Uni and DOCA-salt rats were simultaneously treated with vehicle or atrasentan (ET(A) receptor antagonist, 5 mg/Kg/day). Cavernosal reactivity to ET-1, phenylephrine (PE), ET(B) receptor agonist (IRL-1620) and electric field stimulation (EFS) were evaluated in vitro. Expression of ROCK alpha, ROCK beta, myosin phosphatase target subunit 1 (MYPT-1), and extracellular signal-regulated kinase 1/2 (ERK 1/2) were evaluated by western blot analysis. ET-1 and ET(A) receptor mRNA expression was evaluated by real-time reverse-transcriptase polymerase chain reaction. Voltage-dependent increase in intracavernosal pressure/mean arterial pressure (ICP/MAP) was used to evaluate erectile function in vivo. ET(A) receptor blockade prevents DOCA-salt-associated ED. Cavernosal strips from DOCA-salt rats displayed augmented preproET-1 expression, increased contractile responses to ET-1 and decreased relaxation to IRL-1620. Contractile responses induced by EFS and PE were enhanced in cavernosal tissues from DOCA-salt hypertensive rats. These functional changes were associated with increased activation of the RhoA/Rho-kinase and ERK 1/2 pathways. Treatment of rats with atrasentan completely prevented changes in cavernosal reactivity in DOCA-salt rats and restored the decreased ICP/MAP, completely preventing ED in DOCA-salt rats. Activation of the ET-1/ET(A) pathway contributes to mineralocorticoid hypertension-associated ED. ET(A) receptor blockade may represent an alternative therapeutic approach for ED associated with salt-sensitive hypertension and in pathological conditions where increased levels of ET-1 are present. Carneiro FS, Nunes KP, Giachini FRC, Lima VV, Carneiro ZN, Nogueira EF, Leite R, Ergul A, Rainey WE, Webb RC, and Tostes RC. Activation of the ET-1/ETA pathway contributes to erectile dysfunction associated with mineralocorticoid hypertension. J Sex Med **;**:**-**.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Making the diagnosis of acute pulmonary thromboembolism (APT) and assessing its severity is very challenging, While cardiac troponin I (cTnI) concentrations are promising in risk stratification, no previous study has examined whether there is a linear relation between cTnI concentrations and the severity of APT. Moreover, matrix metalloprotemases (MMPs) are involved in the pathophysiology of APT. However, it is unknown whether the increases in MMP concentrations after APT reflect the severity of this condition. We examined whether the circulating concentrations of these biomarkers increase in proportion to the severity of experimental APT induced in anesthetized dogs. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. Hemodynamic evaluations were carried out for 120 min. Gelatin zymography of MMP-2 and MMP-9 from plasma samples were performed and serum cTnI concentrations were determined at baseline and 120 min after APT. Results: While no significant increases in pro-MMP-2 concentrations were found after APT, pro-MMP-9 concentrations increased by 80% only after 5 ml/kg of clot embolization. Serum cTnI and plasma pro-MMP-9 concentrations correlated positively with pulmonary vascular resistance (P=0.007 and rs=0.833 for troponin 1, and P=0.034 and rs=0.684 for pro-MMP-9) and with pulmonary artery pressure (P=0.005 and rs=0.610 for troponin 1, and P=0.022 and rs=0.720 for pro-MMP-9). Conclusions: Circulating cTnI and pro-MMP-9 increase in proportion to the severity of APT, although the increases in plasma pro-MMP-9 are less clear with less severe APT. These findings may be relevant for clinical APT. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium may influence blood pressure by modulating vascular tone and structure through its effects on myriad biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoconstrictor agents. Mammalian cells regulate Mg(2+) concentration through special transport systems that have only recently been characterized. Magnesium efflux occurs via Na(2+)-dependent and Na(2+)-independent pathways. Mg(2+) influx is controlled by recently cloned transporters including Mrs2p, SLC41A1, SLC41A2, ACDP2, MagT1, TRPM6 and TRPM7. Alterations in some of these systems may contribute to hypomagnesemia and intracellular Mg(2+) deficiency in hypertension and other cardiovascular pathologies. In particular, increased Mg(2+) efflux through dysregulation of the vascular Na(+)/Mg(2+) exchanger and decreased Mg(2+) influx due to defective vascular and renal TRPM6/7 expression/activity may be important in altered vasomotor tone and consequently in blood pressure regulation. The present review discusses the role of Mg(2+) in vascular biology and implications in hypertension and focuses on the putative transport systems that control magnesium homeostasis in the vascular system. Much research is still needed to clarify the exact mechanisms of cardiovascular Mg(2+) regulation and the implications of aberrant cellular Mg(2+) transport and altered cation status in the pathogenesis of hypertension and other cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction has been linked to a decrease in nitric oxide (NO) bioavailability and attenuated endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation. The small (SK(Ca)) and intermediate (IK(Ca)) calcium-activated potassium channels play a key role in endothelium-dependent relaxation. Because the repressor element 1-silencing transcription factor (REST) negatively regulates IK(Ca) expression, we hypothesized that augmented REST and decreased IK(Ca) expression contributes to impaired endothelium-dependent vasodilation associated with hypertension. Acetylcholine (ACh) responses were slightly decreased in small mesenteric arteries from male stroke-prone spontaneously hypertensive rats (SHRSPs) versus arteries from Wistar Kyoto (WKY) rats. Incubation with N-nitro-L-arginine methyl ester (L-NAME; 100 mu mol/L) and indomethacin (100 mu mol/L) greatly impaired ACh responses in vessels from SHRSP. lberiotoxin (0.1 mu mol/L), which is a selective inhibitor of large-conductance K(Ca) (BK(Ca)) channels, did not modify EDHF-mediated vasodilation in SHRSP or WKY. UCL-1684 (0.1 mu mol/L.), which is a selective inhibitor of SKCa channels, almost abolished EDHF-mediated vasodilation in WKY and decreased relaxation in SHRSP. 1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole (TRAM-34; 10 mu mol/L) and charybdotoxin (0.1 mu mol/L), which are both IKCa inhibitors, produced a small decrease of EDHF relaxation in WKY but completely abrogated EDHF vasodilation in SHRSP. EDHF-mediated relaxant responses were completely abolished in both groups by simultaneous treatment with UCL-1684 and TRAM-34 or charybdotoxin. Relaxation to SK(Ca)/IK(Ca) channels agonist NS-309 was decreased in SHRSP arteries. The expression of SK(Ca) was decreased, whereas IK(Ca) was increased in SHRSP mesenteric arteries. REST expression was reduced in arteries from SHRSP. Vessels incubated with TRAM-34 (10 mu mol/L) for 24h displayed reduced REST expression and demonstrated no differences in IK(Ca). In conclusion, IK(Ca) channel upregulation, via decreased REST, seems to compensate deficient activity of SK(Ca) channels in the vasculature of spontaneously hypertensive rats. (Translational Research 2009; 154:183-193)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: We assessed the effects of right atrial stretch on gastric tone and neuro-humoral pathways involved in this phenomenon. Main methods: Anesthetized male rats were submitted for monitoring of the mean arterial pressure (MAP) and central venous pressure (CVP). A balloon catheter positioned into the stomach monitored by plethysmography the gastric volume (GV). All rats were monitored for 55-min. After the first 20-min of monitoring (basal period), rats were either submitted to a 5-min interval of atrial stretch (AS) or maintained as controls. An intra-atrial balloon catheter was distended with 30,50, or 70 mu L of saline. GV and hemodynamic data were also monitored for a further 30-min. Another set of rats, either previously submitted to subdiaphragmaic vagotomy or splanchnicectomy plus celiac ganglionectomy or maintained as controls (sham), were also submitted to AS. Each subset consisted of six rats. The plasma level of the atrial natriuretic peptide (ANP) was measured in another group of rats. Data were compared by ANOVA followed by Bonferroni`s test. Key findings: In control rats, the GV, MAP, and CVP remained at stable levels throughout the studies. In addition to increase the CVP, AS also decreased (P<0.05) the GV by 14%, 11.5%, and 16.5% in the 30, 50, and 70 mu L groups, respectively. Vagotomy prevented the GV decrease. In contrast, the AS decreased (P<0.05) the GV by 21.3% in splanchnicectomized rats. Significance: AS decreased the GV of rats in a volume-dependent manner, a phenomenon prevented by vagotomy but enhanced by celiac ganglionectomy. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Purpose: The role of the superior colliculus (SC) in seizure expression is controversial and appears to be dependent upon the epilepsy model. This study shows the effect of disconnection between SC deep layers and adjacent tissues in the expression of acute and kindling seizures. Methods: Subcollicular transections, ablation of SC superficial and deep layers, and ablation of only the cerebral cortex were evaluated in the Wistar audiogenic rat (WAR) strain during acute and kindled audiogenic seizures. The audiogenic seizure kindling protocol started 4 days after surgeries, with two acoustic stimuli per day for 10 days. Acute audiogenic seizures were evaluated by a categorized seizure severity midbrain index (cSI) and kindled seizures by a severity limbic index (LI). Results: All subcollicular transections reaching the deep layers of the SC abolished audiogenic seizures or significantly decreased cSI. In the unlesioned kindled group, a reciprocal relationship between limbic and brainstem pattern of seizures was seen. The increased number of stimuli provoked an audiogenic kindling phenomenon. Ablation of the entire SC (ablation group) or of the cerebral cortex only (ctx-operated group) hampered the acquisition of limbic behaviors. There was no difference in cSI and LI between the ctx-operated and ablation groups, but there was a difference between ctx-operated and the unlesioned kindled group. There was also no difference in cSI between SC deep layer transection and ablation groups. Results of histologic analyses were similar for acute and kindled audiogenic seizure groups. Conclusions: SC deep layers are involved in the expression of acute and kindled audiogenic seizure, and the cerebral cortex is essential for audiogenic kindling development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of the 1p/19q allelic status in gliomas, primarily those with a major oligodendroglial component, has become an excellent molecular complement to tumor histology in order to identify those cases sensitive to chemotherapy. In addition to loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), or comparative genomic hybridization (CGH), multiplex ligation-dependent probe amplification (MLPA) has been shown to be an alternative methodology to identify deletions of those chromosome arms. We used MLPA to explore the 1p and 19q glioblastomas, and a series of 76 gliomas: 41 tumors with a major oligodendroglial component, 34 glioblastomas, and one low-grade astrocytoma. We compared the MLPA findings of the oligodendroglial cases with those previously obtained using LOH in the same samples. Thirty-eight of 41 oligodendrogliomas displayed identical findings by both LOH and MLPA, and losses at either 1p and/or 19q were identified in 12 of 35 (34%) astrocytic tumors. These findings agree with data previously reported comparing MLPA versus FISH or CGH in gliomas and suggest that MLPA can be used in the identification 1p/19q allelic deletions on these brain neoplams. (c) 2009 Elsevier Inc. All rights reserved. reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may, be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients` prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas` abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at I p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimycotic activity of fatty acids has long been known, and their presence in human skin and sweat appears to protect the host against superficial mycoses. Undecanoic acid is a medium-chain fatty acid that has been used in the treatment of dermatophytoses in humans. In this study, we selected one Trichophyton rubrum undecanoic acid-resistant strain that showed a marked reduction in its capacity to grow on human nail fragments, which correlated with the reduced activity of secreted keratinolytic proteases. Moreover, the susceptibility of T. rubrum to undecanoic acid is also dependent on the carbon source utilized by both control and resistant strains. The growth of the control strain was strongly inhibited by undecanoic acid in Sabouraud medium or in cultures supplemented with low-fat milk, whereas it was ineffective when the cultures were supplemented with Tween 20 or keratin as the carbon source, suggesting that nutrient conditions are crucial in establishing a susceptibility to antifungal drugs, which is helpful for the isolation and characterization of resistant strains, and in the screening for new antifungal drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)like receptor proteins in host response to T cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappa B-dependent products in response to infection and failed to restrict T cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T cruzi infection by mechanisms independent of cytokine production. The Journal of Immunology, 2010, 184: 1148-1152.