169 resultados para Voltage ranges
Resumo:
Broad-snouted caiman`s (Caiman latirostris) geographic distribution comprises one of the widest latitudinal ranges among all crocodilians. In this study we analyzed the relationship between geographic distance (along the species latitudinal range) and genetic differentiation using DNA microsatellite loci developed for C. latirostris and Alligator mississippiensis. The results suggest that there is a consistent relationship between geographic distance and genetic differentiation; however, other biogeographical factors seem to be relevant. The Atlantic Chain (Serra do Mar) seems to be an effective geographic barrier, as well as the relatively narrow (<= 1.5 km) sea channel between Cardoso Island and the continent. In addition, coastal populations seem to have been well connected in recent geological time (Pleistocene 16,000 years ago) all along the eastern Brazilian coast. Further studies should focus on the Sao Francisco River drainage, which is still poorly known for this species. J. Exp. Zool. 30.9A:628-636, 2008. (C) 2008 Wiley-Liss, Inc.
Resumo:
Global biodiversity peaks in the tropical forests of the Andes, a striking geological feature that has likely been instrumental in generating biodiversity by providing opportunities for both vicariant and ecological speciation. However, the role of these mountains in the diversification of insects, which dominate biodiversity, has been poorly explored using phylogenetic methods. Here we study the role of the Andes in the evolution of a diverse Neotropical insect group, the clearwing butterflies. We used dated species-level phylogenies to investigate the time course of speciation and to infer ancestral elevation ranges for two diverse genera. We show that both genera likely originated at middle elevations in the Andes in the Middle Miocene, contrasting with most published results in vertebrates that point to a lowland origin. Although we detected a signature of vicariance caused by the uplift of the Andes at the Miocene-Pliocene boundary, most sister species were parapatric without any obvious vicariant barrier. Combined with an overall decelerating speciation rate, these results suggest an important role for ecological speciation and adaptive radiation, rather than simple vicariance.
Resumo:
The immune response to infection by dermatophytes ranges from a non-specific host mechanism to a humoral and cell-mediated immune response. The currently accepted view is that a cell-mediated immune response is responsible for the control of dermatophytosis. Indeed, some individuals develop a chronic or recurrent infection mediated by the suppression of a cell-mediated immune response. The immune response to Trichophyton is unusual in that this fungus can elicit both immediate hypersensitivity (IH) and delayed-type hypersensitivity (DTH) in different individuals when they are submitted to a skin test reaction. Understanding the nature and function of the immune response to dermatophytes is an exciting challenge that might lead to novel approaches in the treatment and immunological prophylaxis of dermatophytosis.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Published studies on the association between cancer and paracoccidioidomycosis consist either isolated cases or clinical data based on hospital cohorts of paracoccidioidomycosis. The frequency of neoplasia in series of >= 80 patients with paracoccidioidomycosis ranges from 0.16 to 14.1%, mean of 3.96%. There are only two retrospective controlled studies, one of them showing greater incidence of carcinoma in biopsy and necropsy samples of paracoccidioidomycosis (12 cases in 147 patients with the mycosis: 8.2%) than in the necropsies of the control group (320 cases in 7,302 necropsies: 4.9%). In the other, 22,409 autopsies were reviewed and 4,372 cases of cancer were found; of the 85 patients with paracoccidioidomycosis, 12 were diagnosed with cancer. No differences were observed in the frequency of malignancies between the group of patients with paracoccidioidomycosis (14.1%) and the control group (19.5%). Considering all the reported cases, carcinoma was more frequent than hematological malignancies, and was more often found at the same site or in a neighboring site affected by the mycosis, usually occurring after the diagnosis of the mycosis. Commonly, the basic cause of death was related to secondary infections or neoplasia. Lymphoma was associated with poorly organized rich in fungi granuloma. The clinical course and mortality were related to the cancer evolution or secondary infections and was worse in lymphoid series, metastatic carcinoma or in patients under cytotoxic chemotherapy. Additionally, as in several cases the clinical and histopathological data may mimick neoplasia, the correct diagnosis of both diseases is essential to guarantee an early and safe intervention.
Resumo:
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 mm id x 46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35 degrees C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 mg/mL. The LOQ was 0.125 mg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.
Resumo:
A CE method was developed and validated for the stereoselective determination of midodrine and desglymidodrine in Czapek culture medium to be applied to a stereoselective biotransformation study employing endophytic fungi. The electrophoretic analyses were performed using an uncoated fused-silica capillary and 70 mmol/L sodium acetate buffer solution (pH 5.0) containing 30 mmol/L heptakis (2, 3, 6-tri-O-methyl)-beta-CD as running electrolyte. The applied voltage and temperature used were 15 kV and 15 C, respectively. The UV detector was set at 200 nm. The sample preparation was carried out by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 0.1-12 mu g/mL for each enantiomer of midodrine and desglymidodrine (r >= 0.9975). Within-day and between-day precision and accuracy evaluated by RSDs and relative errors, respectively, were lower than 15% for all analytes. The method proved to be robust by a fractional factorial design evaluation. The validated method was used to assess the midodrine biotransformation to desglymidodrine by the fungus Phomopsis sp. (TD2), which biotransformed 1.1% of (-)-midodrine to (-)-desglymidodrine and 6.1% of (+)-midodrine to (+)-desglymidodrine.
Resumo:
A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4%w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 mu g/mL for each 4-OH-Prop enantiomer and 0.10-10.0 mu g/mL for each Prop enantiomer (r >= 0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)4-OH-Prop in 72 h of incubation.
Resumo:
An experimental design optimization (Box-Behnken design, BBD) was used to develop a CE method for the simultaneous resolution of propranolol (Prop) and 4-hydroxypropranolol enantiomers and acetaminophen (internal standard). The method was optimized using an uncoated fused silica capillary, carboxymethyl-beta-cyclodextrin (CM-beta-CD) as chiral selector and triethylamine/phosphoric acid buffer in alkaline conditions. A BBD for four factors was selected to observe the effects of buffer electrolyte concentration, pH, CM-beta-CD concentration and voltage on separation responses. Each factor was studied at three levels: high, central and low, and three center points were added. The buffer electrolyte concentration ranged from 25 to 75 mM, the pH ranged from 8 to 9, the CM-beta-CD concentration ranged from 3.5 to 4.5%w/v, and the applied run voltage ranged from 14 to 20 W. The responses evaluated were resolution and migration time for the last peak. The obtained responses were processed by Minitab (R) to evaluate the significance of the effects and to find the optimum analysis conditions. The best results were obtained using 4%w/v CM-beta-CD in 25 mM triethylamine/H(3)PO(4) buffer at pH 9 as running electrolyte and 17 kV of voltage. Resolution values of 1.98 and 1.95 were obtained for Prop and 4-hydroxypropranolol enantiomers, respectively. The total analysis time was around of 15 min. The BBD showed to be an adequate design for the development of a CE method, resulting in a rapid and efficient optimization of the pH and concentration of the buffer, cyclodextrin concentration and applied voltage.
Resumo:
A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 x 4.6 mm id, 5.0 mu m particle size) at room temperature with acetonitrile-100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160-240 mu g/mL (correlation coefficient >= 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 mu g/mL), limit of quantification (ranged from 4.26 to 6.84 mu g/mL), precision (relative standard deviation <= 1.87%), accuracy (ranged from 96.97 to 100.54%), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.
Resumo:
Voltage-gated potassium channel toxins (KTxs) are basic short chain peptides comprising 23-43 amino acid residues that can be cross-linked by 3 or 4 disulfide bridges. KTxs are classified into four large families: alpha-, beta-, gamma- and kappa-KTx. These peptides display varying selectivity and affinity for K(v) channel subtypes. In this work, a novel toxin from the Tityus serrulatus venom was isolated, characterized and submitted to a wide electrophysiological screening on 5 different subtypes of Nay channels (Na(V)1.4; Na(V)1.5; Na(V)1.6; Na(V)1.8 and DmNa(V)1) and 12 different subtypes of Kv channels (K(V)1.1 - K(V)1.6; K(V)2.1; K(V)3.1; K(V)4.2; K(V)4.3; Shaker IR and ERG). This novel peptide, named Ts15, has 36 amino acids, is crosslinked by 3 disulfide bridges, has a molecular mass of 3956 Da and pI around 9. Electrophysiological experiments using patch clamp and the two-electrode voltage clamp techniques show that Ts15 preferentially blocks K(V)1.2 and K(V)1.3 channels with an IC(50) value of 196 +/- 25 and 508 +/- 67 nM, respectively. No effect on Na(V) channels was observed, at all tested concentrations. Since Ts15 shows low amino acid identity with other known KTxs, it was considered a bona fide novel type of scorpion toxin. Ts15 is the unique member of the new alpha-Ktx21 subfamily and therefore was classified as alpha-Ktx21.1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Background: The effectiveness of a water/oil (w/o) microemulsion containing quercetin against ultraviolet B radiation (UVB) induced damage was recently demonstrated by our group. However, during the development of new pharmaceutical products, the evaluation of percutaneous absorption and in vivo effectiveness should be accompanied by evaluation of stability parameters as an integral part of the process. Objective: The aim was to investigate the stability of the final microemulsion formulation considering the temperature ranges of storage and application. Methods: The physical, chemical, and functional stability of this formulation under different conditions of storage during 12 months and the photostability of quercetin incorporated into this system over UVB exposure for 7 days were evaluated. Results: Although the results indicated a notable physical stability of the w/o microemulsions during the experimental period under all employed conditions, in both, the chemical and functional studies, a significant loss of quercetin content and antioxidant activity was found after 6 months of storage at 30 degrees C/70% relative humidity and after 2 months at 40 degrees C/70% relative humidity. The photostability study results demonstrated that the incorporation of quercetin into the w/o microemulsion maintained the previously demonstrated photostability of this flavonoid under forced exposure to UVB irradiation. Conclusion: Thus, this work demonstrates that special storage conditions (at 4 +/- 2 degrees C) are necessary to maintain the functionality of the w/o microemulsion containing quercetin and mainly emphasizes the importance of studying physical, chemical, and functional parameters at the same time during stability evaluation of active principles.
Resumo:
Selenium (Se) is an essential element and deficit or excess of dietary Se is associated with health disorders. Relatively elevated Se levels have been reported in the Brazilian Amazon, where there are also important annual variations in the availability of different foods. The present study was conducted among six riparian communities of the Tapajos River to evaluate seasonal variations in blood and sequential hair cm Se concentrations, and to examine the relationships between Se in blood and hair, and blood and urine. Two cross-sectional studies were conducted, at the descending water (DWS, n = 259) and the rising water (RWS, n = 137) seasons, with repeated measures for a subgroup (n = 112). Blood Se (B-Se), hair Se (H-Se) and urine Se (U-Se) were determined. Match-paired analyses were used for seasonal comparisons and the method of best fit was used to describe the relationships between biomarkers. B-Se levels presented a very large range (142-2447 mu g/l) with no overall seasonal variation (median 284 and 292 mu g/l, respectively). Sequential analysis of 13 cm hair strands showed significant variations over time: Se concentrations at the DWS were significantly lower compared with the rising water season (medians: 0.7 and 0.9 mu g/g; ranges: 0.2-4.3 mu g/g and 0.2-5.4 mu g/g, respectively). At both seasons, the relationships between B-Se and H-Se were linear and highly significant (r(2) = 67.9 and 63.6, respectively), while the relationship between B-Se and U-Se was best described by a sigmoid curve. Gender, age, education and smoking did not influence Se status or biomarker relationships. Variations in H-Se suggest that there may be seasonal availability of Se sources in local food. For populations presenting a large range and/or elevated Se exposure, sequential analyses of H-Se may provide a good reflection of variations in Se status.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.