125 resultados para Volatile carbonyl compounds
Resumo:
We investigated three amino derivatives of ortho-aminobenzoic or anthranilic acid (o-Abz): a) 2-Amino-benzamide (AbzNH(2)); b) 2-Amino-N-methyl-benzamide (AbzNHCH(3)) and c) 2-Amino-N-N`-dimethyl-bezamide (AbzNH(CH(3))(2)), see Scheme 1. We describe the results of ab-initio calculations on the structural characteristics of the compounds and experimental studies about solvent effects in their absorption and steady-state and time-resolved emission properties. Ab-initio calculations showed higher stability for the rotameric conformation in which the oxygen of carbonyl is near to the nitrogen of ortho-amino group. The derivatives present decrease in the delocalization of pi electron, and absorption bands are blue shifted compared to the parent compound absorption, the extent of the effect increasing from to Abz-NH(2) to Abz-NHCH(3) Abz-NH(CH(3))(2). Measurements performed in several solvents have shown that the the dependence of Stokes shift of the derivatives with the orientational polarizability follows the Onsager-Lippert model for general effects of solvent. However deviation occurred in solvents with properties of Bronsted acids, or electron acceptor characteristics, so that hydrogen bonds formed with protic solvents predominates over intramolecular hydrogen bond. In most solvents the fluorescence decay of AbzNH(2) and AbzNHCH(3) was fitted to a single exponential with lifetimes around 7.0 ns and no correlation with polarity of the solvent was observed. The fluorescence decay of AbzN(CH(3))(2) showed lifetimes around 2.0 ns, consistent with low quantum yield of the compound. The spectroscopic properties of the monoamino derivative AbzNHCH(3) are representative of the properties presented by Abz labelled peptides and fatty acids previously studied.
Resumo:
Species of Baccharis exhibit antibiotic, antiseptic, wound-healing, and anti-protozoal properties, and have been used in the traditional medicine of South America for the treatment of several diseases. In the present work, the fractionation of EtOH extract from aerial parts of Baccharis uncinella indicated that the isolated compounds caffeic acid and pectolinaringenin showed inhibitory activity against Leishmania (L.) amazonensis and Leishmania (V.) braziliensis promastigotes, respectively. Moreover, amastigote forms of both species were highly sensible to the fraction composed by oleanolic + ursolic acids and pectolinaringenin. Caffeic acid also inhibited amastigote forms of L. (L.) amazonensis, but this effect was weak in L. (V.) braziliensis amastigotes. The treatment of infected macrophages with these compounds did not alter the levels of nitrates, indicating a direct effect of the compounds on amastigote stages. The results presented herein suggest that the active components from B. uncinella can be important to the design of new drugs against American tegumentar leishmaniases.
Resumo:
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.