381 resultados para Shrinkage-Induced Cracking
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro-Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl(2), respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl(2), whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl(2). Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl(2) after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl(2), but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl(2) when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl(2), whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl(2). The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl(2). However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl(2) from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.
Resumo:
Viroids have been used as ""graft transmissible dwarfing agents"" (GTDA) in several countries, mainly to reduce growth of citrus trees, thus increasing their density in orchards. In the State of Sao Paulo, Brazil, plants of the acid lime `Tahiti` are usually grafted with a complex of GTDA, presumably viroids. The aim of the present work was the identification and molecular characterization of the viroids infecting trees of acid lime `Tahiti` displaying ""Quebra galho"" (bark-cracking). Viroids were identified and characterized by biological indexing in `Etrog` citron, Northern-blot hybridization, RT-PCR, cloning and complete sequencing of the RNA genomes. Citrus exocortis viroid (CEVd), Hop stunt viroid (HSVd) and Citrus dwarfing viroid (CDVd) were found in different combinations. Although we have not been able to infer a direct relationship between the agronomical performance and symptom severity with the presence of a specific viroid or viroid combination, the differences in the severity of ""Quebra-galho"" symptoms among different trees is probably associated with the presence (or absence) of CEVd, with its interaction with other viroids perhaps determining the different phenotypes observed in the field.
Resumo:
This experiment was designed to examine changes in milk fatty acids during fish oil-induced milk fat depression (MFD) and to test the theory that these changes are related to milk fat fluidity. The experiment was divided into three periods: 1) Baseline: all cows (n = 12) received a high fiber diet without fish oil (FO) for 12 days; 2) Treatment: 4 cows/group received the following treatments for 21 days: a) Low fiber diet without FO (LF), b) High fiber diet+FO (HF+FO) and c) Low fiber diet+FO (LF+FO); 3) Post-treatment: cows returned to the baseline diet and were monitored for 12 days. FO was included at 1.6% DM and HF and LF diets had 40 and 26% NDF, respectively. Milk fat content and yield were unchanged by the LF diet, but were reduced by FO diets at both dietary fiber levels and recovered in the post-treatment period. FO diets caused a pronounced reduction in stearic and oleic acid concentrations in milk fat and an equally pronounced increase in trans-18:1 fatty acid concentrations. Milk fat mean melting point (MMP) was correlated with MFD (r=0.73) and with milk oleic acid concentration (r=-0.92). The ratio of oleic:stearic in milk fat increased gradually and consistently in response to FO. Trans-C18:1 isomers with double bounds at carbon :<= 10 increased with greater MFD and those with double bonds at carbon ! I I decreased with greater MFD. Trans-9 cis-11 CLA explained more than 80% of MFD and was strongly correlated with trans-10 C18:1. Maintenance of MMP below 39-40 degrees C suggests that the mammary gland was able to secrete only milk fat with adequate fluidity and that MFD could be an adaptation mechanism to prevent secretion of milk with higher MMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
Eucalyptus camaldulensis has great importance in Brazil because of their phenotypic plasticity for different environmental conditions, as soils, altitudes and rainfall. This study is an investigation of a base population of E. camaldulensis from Australia through a progeny test implanted in Selviria, MS. The trial was established in a randomized block design, with 25 families and 60 replications of single tree plots. Genetic parameters for anatomic traits and volume shrinkage were estimated, as well as their correlations with wood basic density. No significant differences among progenies were observed for the traits studied. The additive genetic variation coefficient at individual and among progeny levels ranged from low (0.26%) to high (16.98%). The narrow sense heritability at individual and family means levels also ranged from low (0.01) to high (0.87). This indicates that some traits are under strong genetic control and can be improved by selection. In the present situation, in order to attain the highest genetic gains, the sequential selection among and within progeny would be recommended.
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant`s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms underlying atorvastatin supression of ABCB1 gene expression, at transcriptional and post-transcriptional levels of ABCB1 gene in HepG2 (human hepatocellular carcinoma) cells were investigated. Quantitative real-time PCR was used to measure mRNA levels, as well as to estimate the half-life of ABCB1 mRNA. Western blotting analysis was performed in order to measure protein levels of ABCB1. Electrophoretic mobility shift assay (EMSA) was used to evaluate interactions between protein(s) and ABCB1 promoter region. Exposure to atorvastatin for 24 h resulted in a dose-dependent decrease of ABCB1 mRNA and protein levels, which was not abolished by addition of farnesyl or geranylgeranyl pyrophosphate. After removing fetal bovine serum from the media, however, ABCB1 expression was decreased by 2-fold in either HepG2 cells treated and non-treated with atorvastatin. Addition of cholesterol to serum free media abolished this latter effect on ABCB1 mRNA levels. In EMSA using a 5`-end-labeled 241 bp ABCB1 promoter DNA fragment (-198 to +43) as probe, the binding of the proteins to the probe was reduced by NF-Y, but not changed by NF kappa B, AP-1, and SP1. However, the NF-Y binding activity was similar in control and atorvastatin-treated cells. mRNA stability studies revealed that ABCB1 mRNA degradation was increased in 1, 10 and 20 mu M atorvastatin-treated versus control cells (half-lives of 2 h versus 7 h). Therefore, evidence is provided that decreased mRNA stability by atorvastatin treatment may explain the decrease in ABCB1 transcript levels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study we assessed the protective effect of topical application of Pothomorphe umbellata extract on ultraviolet B (UVB)-induced skin lesion parameters in hairless mouse epidermis. A single dose of UVB irradiation (0.23 kJ/m(2)) resulted in a significant decrease in thymine dimer-positive cells and apoptotic sunburn cells, with an increase in p53 and proliferating cell nuclear antigen-positive cells in the epidermis. After 5 weeks (total dose 13.17 kJ/m(2)) and 15 weeks (total dose 55.51 kJ/m(2)) of irradiation, P. umbellata treatment inhibited the hyperplasic response and induced an increase in p53-positive cells. These findings suggest that P. umbellata extract affords protection against UVB-induced skin lesions.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII. Previously, we described that Plasmodium vivax AMA-1 (PvAMA-1) ectodomain is highly immunogenic in natural human infections. Here, we expressed each domain, separately or in combination (DI-II or DII-III), as bacterial recombinant proteins to map immunodominant epitopes within the PvAMA-1 ectodomain. IgG recognition was assessed by ELISA using sera of P. vivax-infected individuals collected from endemic regions of Brazil or antibodies raised in immunized mice. The frequencies of responders to recombinant proteins containing the DII were higher than the others and similar to the ones observed against the PvAMA-1 ectodomain. Moreover, ELISA inhibition assays using the PvAMA-1 ectodomain as substrate revealed the presence of many common epitopes within DI-II that are recognized by human immune antibodies. Finally, immunization of mice with the PvAMA-1 ectodomain induced high levels of antibodies predominantly to DI-II. Together, our results indicate that DII is particularly immunogenic during natural human infections, thus indicating that this region could be used as part of an experimental sub-unit vaccine to prevent vivax malaria. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39) nmol/paw, 0.4 (0.2-0.7) mu mol/paw, 0.3 (0.1-0.9) mu mol/paw and 3.2 (0.9-11.5) mu mol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 +/- 10 and 68 +/- 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 +/- 9% and 67 +/- 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 mu M) enhanced the specific binding of [(3)H](center dot)-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The use of the classic aromatic antiepileptic drugs (AAEDs) has recently been expanded to a broad spectrum of psychiatric and neurological disorders. However, the clinical use of these drugs is limited by several adverse effects, mainly idiosyncratic hepatotoxicity. AAED-induced hepatotoxicity has been attributed to a defective detoxification by the epoxide hydrolase and accumulation of arene oxides. The underlying mechanism has been proposed as immune-mediated, but direct toxicity has also been suggested. In general, idiosyncratic drug-induced hepatotoxicity may be mediated, at least in part, by oxidative stress. On the other hand, the oxidative stress induced by the AAED metabolites has not been demonstrated yet. Therefore, in the present study we have evaluated the induction of oxidative stress by three classical AAEDs: carbamazepine. phenytoin and phenobarbital as well as by their metabolites. The toxic effects of the metabolites were evaluated by incubating the drug with rat liver microsomes. The AAED-induced oxidative stress was demonstrated by the increased malondialdehyde levels, oxidation of cardiolipin; oxidation of sulfhydryl proteins and alteration of the cellular redox status. Results suggest that the hepatotoxicity associated with AAED might be mediated by the oxidative stress induced by the drugs metabolites. (C) 2008 Elsevier Ltd. All rights reserved