126 resultados para Regression Models


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work is to verify the stability of the relationship between real activity and interest rate spread. The test is based on Chen (1988) and Osorio and Galea (2006). The analysis is applied to Chile and the United States, from 1980 to 1999. In general, in both cases the relationship was statistically significant in early 80s, but a break point is found in both countries during that decades, suggesting that the relationship depends on the monetary rule follow by the Central Bank.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP) whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling It Included seven batches/trials three were supplemented with each type of the dairy protein used three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g(-1) of final product A control experiment was prepared without supplementing the milk base Processed milk bases were fermented at 42 C until pH 4 5 by using a starter culture blend that consisted of Streptococcus thermophilus Lactobacillus delbrueckii subsp bulgaricus and Bifidobacterium (Humans subsp lactis The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses enumeration of viable bacteria and theological characteristics of the yoghurts Models were adjusted to the results (kinetic responses counts of viable bacteria and theological parameters) through three regression models (linear quadratic and cubic special) applied to mixtures The results showed that the addition of milk proteins affected slightly acidification profile and counts of S thermophilus and B animal`s subsp lactis but it was significant for L delbrueckii subsp bulgaricus Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the theological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria (C) 2010 Elsevier Ltd All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.