232 resultados para Paper production
Resumo:
Biopulping fundamentals, technology and mechanisms are reviewed in this article. Mill evaluation of Eucalyptus grandis wood chips biotreated by Ceriporiopsis subvermispora on a 50-tonne pilot-plant demonstrated that equivalent energy savings can be obtained in lab- and mill-scale biopulping. Some drawbacks concerning limited improvements in pulp strength and contamination of the chip pile with opportunist fungi have been observed. The use of pre-cultured wood chips as inoculum seed for the biotreatment process minimized contamination problems related to the use of blended mycelium and corn-steep liquor in the inoculation step. Alkaline wash restored part of the brightness in biopulps and marketable brightness values were obtained by one-stage bleaching with 5% H2O2 when bio-TMP pulps were under evaluation. Considering the current scenario, the understanding of biopulping mechanisms has gained renewed attention because more resistant and competitive fungal species could be selected with basis on a function-directed screening project. A series of studies aimed to elucidate structural changes in lignin during wood biodegradation by C. subvermispora had indicated that lignin depolymerization occurs during initial stages of wood biotreatment. Aromatic hydroxyls did not increase with the split of aryl-ether linkages, suggesting that the ether-cleavage-products remain as quitione-type structures. On the other hand, cellulose is more resistant to the attack by C subvermispora. MnP-initiated lipid peroxidation reactions have been proposed to explain degradation of non-phenolic lignin substructures by C subvermispora, while the lack of cellobiohydrolases and the occurrence of systems able to suppress Fenton`s reaction in the cultures have explained non-efficient cellulose degradation by this biopulping fungus. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Brewer`s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and < 3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.
Effects of medium supplementation and pH control on lactic acid production from brewer`s spent grain
Resumo:
A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Amylases and lipases are highly demanded industrial enzymes in various sectors such as food, pharmaceuticals, textiles, and detergents. Amylases are of ubiquitous occurrence and hold the maximum market share of enzyme sales. Lipases are the most versatile biocatalyst and bring about a range of bioconversion reactions such as hydrolysis, inter-esterification, esterification, alcoholysis, acidolysis, and aminolysis. The objective of this work was to study the feasibility for amylolitic and lipolytic production using a bacterium strain isolated from petroleum contaminated soil in the same submerged fermentation. This was a sequential process based on starch and vegetable oils feedstocks. Run were performed in batchwise using 2% starch supplemented with suitable nutrients and different vegetable oils as a lipase inducers. Fermentation conditions were pH 5.0; 30 degrees C, and stirred speed (200 rpm). Maxima activities for amyloglucosidase and lipase were, respectively, 0.18 and 1,150 U/ml. These results showed a promising methodology to obtain both enzymes using industrial waste resources containing vegetable oils.
Resumo:
The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl(-1) xylose, 30.0 gl(-1) glucose and in both sugars mixture (30.0 gl(-1) xylose and 2.0 gl(-1) glucose). The vacuum evaporated hydrolysate (80 gl(-1)) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite(A (R))). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30A degrees C. The maximum XR (0.618 Umg (Prot) (-1) ) and XDH (0.783 Umg (Prot) (-1) ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl(-1)) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.
Resumo:
The effects of initial xylose concentration and nutritional supplementation of brewer`s spent grain hydrolysate on xylitol production by Candida guilliermondii were evaluated using experimental design methodology. The hydrolysate containing 55, 75 or 95 g/l xylose, supplemented or not with nutrients (calcium chloride, ammonium sulfate and rice bran extract), was used as fermentation medium. The increase in xylitol yield and productivity was related to the increase of initial xylose concentration, but up to a certain limit. above of which the yeast performance was not improved. The hydrolysate supplementation with nutrients did not interfere with xylose-to-xylitol conversion. By using the statistic tool the best conditions for maximum xylitol production were found. which consisted in using the non-supplemented hydrolysate containing 70 g/l initial xylose concentration. Under these conditions, a xylitol yield of 0.78 g/g and productivity of 0.58 g/(l h) were achieved. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Xylitol is a sugar alcohol being explored for clinical uses. The aim was to evaluate the effects of xylitol on Leishmania amazonensis-infected J774A.1 macrophages. Macrophages were infected with L. amazonensis for 3 It, washed and incubated with 2.5 or 5.0% xylitol for 24, 48, and 72 h at 37 degrees C. Infection indexes for macrophages incubated only in medium were compared to those treated with xylitol. Cell viability and nitric oxide production were determined each time. Xylitol did not affect L. amazonensis or J774A.1 cell viabilities. Xylitol at 5.0% stimulated nitric oxide production by macrophages at 72 h (p < 0.01). At 2.5 and 5.0%, xylitol inhibited nitric oxide production by L. amazonensis at 48 h. (p < 0.05) when compared to control. Infection indexes were significantly lower at 72 h (P < 0.05), (16.9% and 9.6%) in cells cultivated with 2.5 and 5.0% xylitol, respectively, compared to control (38.4%). Results suggest a potential leishmanicidal action of the xylitol on infected macropliages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This study deals with two innovative brewing processes, high gravity batch and complete continuous beer fermentation systems. The results show a significant influence of the variables such as concentration and temperature on the yield factor of the substrate into ethanol and consequently on the productivity of the high gravity batch process. The technological feasibility of continuous production of beer based on yeast immobilization on cheap alternative carriers was also demonstrated. The influence of process parameters on fermentation performance and quality of the obtained beers was studied by sensorial analysis. No significant difference in the degree of acceptance between the obtained products and some traditional market brands was found. (c) 2008 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.
Resumo:
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.
Resumo:
Cheese whey powder (CWP) is an attractive raw material for ethanol production since it is a dried and concentrated form of CW and contains lactose in addition to nitrogen, phosphate and other essential nutrients. In the present work, deproteinized CWP was utilized as fermentation medium for ethanol production by Kluyveromyces fragilis. The individual and combined effects of initial lactose concentration (50-150 kg m(-3)), temperature (25-35 degrees C) and inoculum concentration (1-3 kg m(-3)) were investigated through a 2(3) full-factorial central composite design, and the optimal conditions for maximizing the ethanol production were determined. According to the statistical analysis, in the studied range of values, only the initial lactose concentration had a significant effect on ethanol production, resulting in higher product formation as the initial substrate concentration was increased. Assays with initial lactose concentration varying from 150 to 250 kg m(-3) were thus performed and revealed that the use of 200 kg m(-3) initial lactose concentration, inoculum concentration of 1 kg m(-3) and temperature of 35 degrees C were the best conditions for maximizing the ethanol production from CWP solution. Under these conditions, 80.95 kg m(-3) of ethanol was obtained after 44 h of fermentation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a d-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-a dagger 1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. d-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose) l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.
Resumo:
Cheese whey (CW) and deproteinised cheese whey (DCW) were investigated for their suitability as novel substrates for the production of kefir-like beverages. Lactose consumption, ethanol production, as well as organic acids and volatile compounds formation, were determined during CW and DCW fermentation by kefir grains and compared with values obtained during the production of traditional milk kefir. The results showed that kefir grains were able to utilise lactose from CW and DCW and produce similar amounts of ethanol (7.8-8.3 g/l), lactic acid (5.0 g/l) and acetic acid (0.7 g/l) to those obtained during milk fermentation. In addition, the concentration of higher alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol, and 1-propanol), ester (ethyl acetate) and aldehyde (acetaldehyde) in cheese whey-based kefir and milk kefir beverages were also produced in similar amounts. Cheese whey and deproteinised cheese whey may therefore serve as substrates for the production of kefir-like beverages similar to milk kefir. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The ethanol production by Pichia stipitis was evaluated in a stirred tank bioreactor using semi-defined medium containing xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to a 2(2) full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation (150 to 250 rpm) conditions on ethanol production. In the studied range of values, the agitation increase and aeration decrease favored ethanol production, which was maximum (26.7 g/l) using 250 rpm and 0.25 vvm, conditions that gave a volumetric oxygen transfer coefficient (k(L)a value) of 4.9 h(-1). Under these conditions, the ethanol yield factor, ethanol productivity, and the process efficiency were 0.32 g/g, 0.32 g/l.h, and 63%, respectively. These results are promising and contribute to the development of a suitable process for ethanol production from xylose by Pichia stipitis.
Resumo:
This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.