130 resultados para PULMONARY TUBERCULOSIS
Resumo:
Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bacterial and fungal infections are common in acquired immunodeficiency syndrome (AIDS). Histoplasmosis is a common fungal disease in severely immunocompromised patients infected with human immunodeficiency virus (HIV) in endemic areas. In this population the most frequent form of presentation of histoplasmosis is disseminated, with the clinical manifestations being similar to those of disseminated tuberculosis. Esophageal histoplasmosis and the association of histoplasmosis with tuberculosis are infrequent. We report here a rare Case of esophageal histoplasmosis associated with disseminated tuberculosis in AIDS.
Resumo:
Acute pulmonary embolism produces acute pulmonary hypertension, which can be counteracted by activating the nitric oxide-cyclic guanosine 3`,5`-monophosphate (cGMP) pathway. While previous studies have shown that sildenafil (an inhibitor of cGMP-specific phosphodiesterase type 5) or nitrite (a storage molecule for nitric oxide) produces beneficial effects during acute pulmonary embolism, no previous study has examined whether the combination of these drugs can produce additive effects. Here, we expand previous findings and examine whether sildenafil enhances the beneficial haemodynamic effects produced by a low-dose infusion of nitrite in a dog model of acute pulmonary embolism. Haemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with saline (n = 4), and in embolized dogs (intravenous injections of microspheres) that received nitrite (6.75 mu mol/kg intravenously over 15 min. followed by 0.28 mu mol/kg/min.) and sildenafil (0.25 mg/kg over 30 min.; n = 8), or nitrite followed by saline (n = 8), or saline followed by sildenafil (n = 7), or only saline (n = 8). Plasma thiobarbituric acid-reactive substances (TBARS) concentrations were determined using a fluorometric method. Acute pulmonary embolism increased pulmonary artery pressure by similar to 24 mmHg. While the infusion of nitrite or sildenafil infusions reversed this increase by similar to 42% (both P < 0.05), the combined infusion of both drugs reversed this increase by similar to 58% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance index. Nitrite or sildenafil alone produced no significant hypotension. However, the combined infusion of both drugs caused transient hypotension (P < 0.05). Both dugs, either alone or combined, blunted the increase in TBARS concentrations caused by acute pulmonary embolism (all P < 0.05). These results suggest that sildenafil improves the beneficial haemodynamic effects of nitrite during acute pulmonary embolism.
Resumo:
Pulmonary artery sarcoma is a rare and highly lethal disease whose clinical findings are often indistinguishable from those of chronic thromboembolic pulmonary hypertension. Partial improvement after thrombolytic therapy has suggested that thromboembolic phenomena may be superimposed on the tumor, but, to date, a well-documented statement of these events has not been provided. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
After one clinical case that evidenced the outbreak, a complete screening by intradermal tuberculin test was performed in one goat herd in Brazil. The herd was composed by 500 animals and 83 of them (16.6%) showed to be reactive to the comparative double cervical intradermal test. Four months after the test, all the 83 reactive animals were slaughtered and blood samples were collected from 45 of them, for serological assays. From those 45, 32 were randomly chosen for necropsy and histopathological and bacteriological procedures were conducted. Histopathology evidenced at least one characteristic lesion of tuberculosis in each animal, with typical granulommas where acid-fast bacilli (AFB) could be observed. Bacteriology was positive for Mycobacterium bovis in 22 samples (68.7%), therefore confirming the etiology of the outbreak. Sera of 45 animals plus 20 other from a certified free tuberculosis farm were tested in an ELISA using the recombinant M.bovis protein MPB70 as capture antigens. From those, 43 were reactive to the test, with high ODs results, considering a cut-off point established by ROC curve analyzing results (cut-off = 0.8; mean = 0.55; range: 0.157-1.357). These results suggest that MPB70-ELISA can be considered as a reliable tool to diagnose tuberculosis in goat herds, since this assay was capable to correctly detect 95.6% of the animals here examined.
Resumo:
Development of the foetal respiratory system includes both pulmonary growth and maturation. In human medicine, a higher incidence of respiratory distress is reported in newborn males. This study aimed to identify different phases of canine foetal lung maturation throughout pregnancy, to determine the stage of pregnancy in which surfactant production begins and to compare pulmonary development of male and female foetuses. Pregnant bitches (34) were subjected to elective ovariohysterectomy and allocated into four groups, according to the stage of pregnancy: 30-40 days of pregnancy (n = 10), 41-50 days (n = 10), 51-60 days (n = 10) and bitches in the first stage of parturition (n = 4). Foetal lungs were histologically processed and evaluated by optical microscopy. The pseudoglandular phase was identified between the 35th day and 46th day of gestation; the onset of canalicular and saccular periods was observed, respectively, from the 48th day and 60th day of pregnancy. Lungs from foetuses at term were in the saccular phase; thus, the development into the alveolar period occurs in the neonatal period. The histological analyses revealed that respiratory tract development is centrifugal, from upper to lower airways. Therefore, it is possible to identify distinct development periods in different portions of the same organ. In conclusion, the saccular phase of lung development begins around 57 and 60 days of pregnancy, the period in which surfactant production is believed to occur. Male and female foetuses present similar pulmonary development from early pregnancy until parturition.
Resumo:
Objectives: Up-regulated matrix metalloproteinases may be involved in the development of cardiomyocyte injury and the degradation of troponin associated with acute pulmonary thromboembolism. We examined whether pretreatment with doxycycline (a nonspecific matrix metalloproteinase inhibitor) protects against cardiomyocyte injury associated with acute pulmonary thromboembolism. Design: Controlled animal study. Setting: University research laboratory. Subjects: Mongrel dogs. Interventions: Anesthetized animals received doxycycline (10 mg/kg intravenously) or saline and acute pulmonary thromboembolism was induced with autologous blood clots injected into the right atrium. Control animals received doxycycline (or saline). Measurements and Main Results: Hemodynamic measurements were performed, and acute pulmonary thromboembolism increased baseline mean pulmonary arterial pressure and pulmonary vascular resistance by approximately 160% and 362%, respectively (both p<.05), 120 mins after acute pulmonary thromboembolism. Pretreatment with doxycycline attenuated these increases (to 125% and 232%, respectively; both p<.05). Although acute pulmonary thromboembolism tended to increase the right ventricle maximum rate of isovolumic pressure development and the maximum rate of isovolumic pressure decay, doxycycline produced no effects on these parameters. Gelatin zymograms of right ventricle showed that acute pulmonary thromboembolism marginally increased matrix metalloproteinase-9 (but not matrix metalloproteinase-2) levels in the right ventricle. A fluorometric assay to assess net matrix metalloproteinase activities showed that acute pulmonary thromboembolism increased matrix metalloproteinase activities in the right ventricle by >100% (p<.05), and this finding was confirmed by in situ zymography of the right ventricle. Doxycycline attenuated acute pulmonary thromboembolism-induced increases in right ventricle matrix metalloproteinase activities. Acute pulmonary thromboembolism induced neutrophil accumulation in the right ventricle, as estimated by myeloperoxidase activity, and doxycycline blunted this effect (p<.05). Serum cardiac troponin I concentrations, which reflect cardiomyocyte injury, increased after acute pulmonary thromboembolism, and this increase was attenuated by pretreatment with doxycycline (p<.05). Conclusions: We found evidence supporting the idea that acute pulmonary thromboembolism is associated with increased matrix metalloproteinase activities in the right ventricle, which may lead to degradation of sarcomeric proteins, including cardiac troponin I. Inhibition of matrix metalloproteinases may be an effective therapeutic intervention in the management of acute pulmonary thromboembolism. (Crit Care Med 2011; 39: 349-356)
Resumo:
Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 pm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 mu mol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT (TM) PicoGreen (R) dsDNA detection kit at baseline and 120 min after APT. Results: APT produced dose-dependent increases in plasma DNA concentrations. which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro. Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels. (C) 2009 Elsevier B.V. All rights reserved.