300 resultados para PERFUSED-RAT-LIVER
Resumo:
Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.
Resumo:
The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Background Low-intensity pulsed ultrasound stimulation (LIPUS) reportedly increases osteogenesis in fracture models but fails in intact bone, suggesting LIPUS does not act on mechanotransduction and growth factor pathways of intact bone. Questions/Purposes We asked whether daily 20-minute LIPUS applied to intact tibias would act on bone proteins involved in mechanotransduction (focal adhesion kinase [FAK], and extracellular signal-regulated kinase-1/2 [ERK-1/2]), and growth factor signaling (insulin receptor substrate-1 [IRS-1]) pathways at 7, 14, and 21 days of treatment. Methods Immunoblotting was performed to detect FAK, ERK-1/2, and IRS-1 expression and activation from the stimulated intact tibias at 7, 14, and 21 days of daily 20-minute LIPUS. Results LIPUS increased FAK expression (at 7 days), ERK-1/2 (at 14 days), and IRS-1 (at 7 days), but expression decreased 7 days later, indicating a noncumulative effect of LIPUS. As only FAK expression was detected at 21 days, these observations suggest LIPUS influences nuclear reactions that may be modulated by a major cellular mechanism preferentially inhibiting IRS-1 expression and not FAK expression. Increased ERK-1/2 expression at 14 days suggests the differing mechanisms for promoting ERK-1/2, FAK, and IRS-1 syntheses. IRS-1 expression behaved similarly to FAK expression; therefore, LIPUS may modulate growth factor pathways. LIPUS increased sustained FAK and ERK-1/2 activation, but not IRS-1, suggesting sustained ERK-1/2 activation is not the result of mechanically induced growth factor activation. Conclusions LIPUS acts on mechanotransduction and growth factor pathways in intact bone in a noncumulative manner. Clinical relevance These data suggest LIPUS applied to intact bone acts on proteins involved in osteogenesis.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
BACKGROUND: There has been growing interest in sodium copper chlorophyllin (Cu-Chl) as a food colourant and supplement owing to its beneficial biological activities. Studies have revealed that this green pigment inhibits experimental carcinogenesis and interacts with proteins and genotoxic agents. Health-related activities have also been associated with the prevention of lipid peroxidation. However, intestinal absorption of this pigment has been considered insignificant, raising questions of whether eventual biological properties are related to pre- or post-absorptive actions. In this study, intestinal absorption of Cu-Chl and its appearance in serum and organs were estimated by high-performance liquid chromatography analysis in rat feeding experiments. The effect of ingested Cu-Chl on lipid peroxidation was analysed by measuring thiobarbituric acid-reactive substances and antioxidant enzyme activities in hepatic and brain tissues of oxidative stress-induced rats. RESULTS: The two main components of commercial Cu-Chl, namely Cu-chlorin e(6) and Cu-chlorin e(4), showed different digestive behaviours, and only Cu-chlorin e4 was found in serum, liver and kidneys. Antioxidant activity in vivo could be observed in brain and seemed to be related to in situ protection but not to antioxidant enzyme modulation. CONCLUSION: As at least one of the major components of Cu-Chl is effectively absorbed, further pharmacolkinetic studies are encouraged to access absorption rates and the role of ingested copper chlorophyllins in mammals. (C) 2009 Society of Chemical Industry
Resumo:
Phenolic compounds are found in seaweed species together with other Substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCI(4) injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCI(4) administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents.
Resumo:
Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.
Resumo:
BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 +/- 0.004 g) in relation to control (E(max) = 0.18 +/- 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 +/- 0.009 g) in relation to control (E(max) = 0.38 +/- 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 +/- 0.004 g) and contraction (E(max) = 0.34 +/- 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 +/- 0.012 g) and contraction (E(max) = 0.42 +/- 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 +/- 0.004 g) or contraction (E(max) = 0.54 +/- 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 +/- 435 U) in relation to control (10 455 +/- 303 U). SC236 reduced the fluorescence in contralateral samples (8250 +/- 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2)(-) derived from COX-2.
Resumo:
We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The flavone C-glucoside, vicenin-2, in semi-purified extracts of the leaves of Lychnophora ericoides was quantified in rat plasma samples using a method based on reversed-phase high performance liquid chromatography coupled to tandem mass spectrometry. Vicenin-2 was analyzed on a LiChrospher (R) RP18 column using an isocratic mobile phase consisting of a mixture of methanol: water (30:70, v/v) plus 2.0% glacial acetic acid at a flow rate of 0.8 mL min(-1). Genistein was used as internal standard. The mass spectrometer was operated in positive ionization mode and analytes were quantified by multiple reaction monitoring at m/z 595 > 457 for vicenin-2 and m/z 271 > 153 for internal standard. Prior to the analysis, each rat plasma sample was acidified with 200 mu L of 50 mmol L(-1) acetic acid solution and extracted by solid-phase extraction using a C18 cartridge. The absolute recoveries were reproducible and the coefficients of variation values were lower than 5.2%. The method was linear over the 12.5 - 1500 ng mL(-1) concentration range and the quantification limit was 12.5 ng mL(-1). Within-day and between-day assay precision and accuracy were studied at three concentration levels (40, 400 and 800 ng mL(-1)) and were lower than 15%. The developed and validated method seems to be suitable for analysis of vicenin-2 in plasma samples obtained from rats that receive a single i.p. dose of 200 mg kg(-1) vicenin-2 extract.
Resumo:
Homocysteine is an independent risk factor for coronary heart disease, as well as for cerebrovascular and peripheral vascular diseases. The purpose of this study was to investigate the effects of hyperhomocysteinemia (HHcy) on vascular reactivity within carotid artery segments isolated from ovariectomized female rats. Treatment with dl-Hcy thiolactone (1 g/kg body weight per day) reduced the phenylephrine-induced contraction of denuded rings. However, the treatment did not alter KCl-induced contractions, or relaxations induced by sodium nitroprusside or acetylcholine. We report elevated expressions of iNOS, eNOS, and nitrotyrosine in homocysteine-treated rat artery sections. Moreover, the inhibition of NOS by l-NAME, 1,400 W, or l-NNA restored phenylephrine-induced vasoconstriction in carotid artery segments from Hcy-treated rats. In conclusion, our findings show that severe HHCy can promote an acute decrease in the endothelium-independent contractile responses of carotid arteries to adrenergic agonists. This effect was restored by nitric oxide synthase inhibitors, which further supports the involvement of nitric oxide in HHcy-derived vascular dysfunction.
Resumo:
This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg(-1) per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F(2 alpha) (PGF(2 alpha)) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA(2)) that counteracts the relaxant action displayed by the peptide.
Resumo:
Pimarane-type diterpenes were described to exert antispasmodic and relaxant activities. Based on this observation we hypothesized that the diterpene ent-8(14),15-pimaradien-3 beta-ol (PA-3 beta-ol) induced vascular relaxation. With this purpose, the present work investigates the mechanisms involved in the vasorelaxant effect of the pimarane-type diterpene PA-3 beta-ol. Vascular reactivity experiments, using standard muscle bath procedures, were performed in isolated aortic rings from male Wistar rats. Cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3AM. PA-3 beta-ol (10, 50 and 100 mu mol/l) inhibited phenylephrine and KCl-induced contraction in either endothelium-intact or denuded rat aortic rings. PA-3 beta-ol also reduced CaCl(2)-induced contraction in Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). PA-3 beta-ol (1-300 mu mol/l) concentration dependently relaxed phenylephrine-pre-contracted rings with intact or denuded endothelium. The diterpene also relaxed KCl-pre-contracted rings with intact or denuded endothelium. Moreover, Ca(2+) mobilization study showed that PA-3 beta-ol (100 mu mol/l) and verapamil (1 mu mol/l) inhibited the increase in Ca(2+)-concentration in smooth muscle and endothelial cells induced by phenylephrine (10 mu mol/l) or KCl (60 mmol/l). Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l) and 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the PA-3 beta-ol concentration-response curves. On the other hand, 7-nitroindazole (100 mu mol/l), 1400 W (1 mu mol/l), indomethacin (10 mu mol/l) and tetraethylammonium (1 mmol/l) did not affect PA-3 beta-ol-induced relaxation. Collectively, our results provide evidence that the effects elicited by PA-3 beta-ol involve extracellular Ca(2+) influx blockade. Its effects are also partly mediated by the activation of NO-cGMP pathway. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.