151 resultados para Neural Modeling Fields
Resumo:
Phospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine its active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling. In addition, we have performed virtual screening in a large database yielding a set of potential bioactive inhibitors. A flexible docking program was used to investigate the interactions between the receptor and the new ligands. We have performed molecular interaction fields (MIFs) calculations with the phospholipase model. Results confirm the important role of Lys49 for binding ligands and suggest three additional residues as well. We have proposed a theoretically nontoxic, drug-like, and potential novel BthTX-I inhibitor. These calculations have been used to guide the design of novel phospholipase inhibitors as potential lead compounds that may be optimized for future treatment of snakebite victims as well as other human diseases in which PLA(2) enzymes are involved.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Modeling volatile organic compounds (voc`s) adsorption onto cup-stacked carbon nanotubes (cscnt) using the linear driving force model. Volatile organic compounds (VOC`s) are an important category of air pollutants and adsorption has been employed in the treatment (or simply concentration) of these compounds. The current study used an ordinary analytical methodology to evaluate the properties of a cup-stacked nanotube (CSCNT), a stacking morphology of truncated conical graphene, with large amounts of open edges on the outer surface and empty central channels. This work used a Carbotrap bearing a cup-stacked structure (composite); for comparison, Carbotrap was used as reference (without the nanotube). The retention and saturation capacities of both adsorbents to each concentration used (1, 5, 20 and 35 ppm of toluene and phenol) were evaluated. The composite performance was greater than Carbotrap; the saturation capacities for the composite was 67% higher than Carbotrap (average values). The Langmuir isotherm model was used to fit equilibrium data for both adsorbents, and a linear driving force model (LDF) was used to quantify intraparticle adsorption kinetics. LDF was suitable to describe the curves.
Resumo:
Aims: It has long been demonstrated that epidermal growth factor (EGF) has catabolic effects oil bone. Thus. we examined the role of EGF in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. Main methods: The maxillary first molars of rats were moved mesially using an orthodontic appliance attached to the maxillary incisor teeth. Rats were randomly divided into 4 groups: (G1) administration of PBS (Phosphate buffer saline Solution (n = 24); (G2) administration of empty liposomes (it = 24): (Q) administration 20 rig of EGF Solution (n = 24): and (G4) 20 ng of EGF-liposomes Solution (it = 24). Each Solution was injected in the mucosa of the left first molar adjacent to the appliance. At days 5, 10, 14 and 2 1 after drug administration. 6 animals of each group were sacrificed. Histomorphometric analysis was used to quantify osteoclasts (Tartrate-resistant acid phosphatase (TRAP) + cells) and tooth movement. Using immunohistochemistry assay we evaluated the RANKL (receptor activator of nuclear factor kappa B ligand) and epidermal growth factor receptor (EGFR) expression. Key findings: The EGF-liposome administration showed an increased tooth movement and osteoclast numbers compared to controls (p<0.05). This was correlated with intense RANKL expression. Both osteoblasts and osteoclasts expressed EGFR. Significance: Local delivery of EGF-liposome stimulates, osteoclastogenesis and tooth movement. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The dorsal (dPAG) and ventral (vPAG) regions of the periaqueductal gray are well known to contain the neural substrates of fear and anxiety. Chemical or electrical stimulation of the dPAG induces freezing, followed by a robust behavioral reaction that has been considered an animal model of panic attack. In contrast, the vPAG is part of a neural system, in which immobility is the usual response to its stimulation. The defense reaction induced by the stimulation of either region is accompanied by anti nociception. Although GABAergic mechanisms are known to exert tonic inhibitory control on the neural substrates of fear in the dPAG, the role of these mechanisms in the vPAG is still unclear. The present study examined defensive behaviors and antinociception induced by microinjections of an inhibitor of gamma-aminobutyric acid synthesis, L-allylglycine (L-AG; 1, 3, and 5 mu g/0.2 mu l), into either the dPAG or vPAG of rats subjected to the open field and tail-flick tests. Passive or tense immobility was the predominant behavior after L-AG (1 or 3 mu g) microinjection into the vPAG and dPAG, respectively, which was replaced with intense hyperactivity, including jumps or rearings, after injections of a higher dose (5 mu g/0.2 mu l) into the dPAG or vPAG. Moreover, whereas intra-dPAG injection of 3 mu g L-AG produced intense antinociception, only weak antinociception was induced by intra-vPAG injections of 5 mu g L-AG. These findings suggest that GABA mechanisms are involved in the mediation of antinociception and behavioral inhibition to aversive stimulation of the vPAG and exert powerful control over the neural substrates of fear in the dPAG to prevent a full-blown defense reaction possibly associated with panic disorder. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Previous functional magnetic resonance imaging (fMRI) studies examined neural activity responses to emotive stimuli in healthy individuals after acute/subacute administration of antidepressants. We now report the effects of repeated use of the antidepressant clomipramine on fMRI data acquired during presentation of emotion-provoking and neutral stimuli on healthy volunteers. A total of 12 volunteers were evaluated with fMRI after receiving low doses of clomipramine for 4 weeks and again after 4 weeks of washout. Fear-, happiness-, anger-provoking and neutral pictures from the International Affective Picture System (IAPS) were used. Data analysis was performed with statistical parametric mapping (P < 0.05). Paired t-test comparisons for each condition between medicated and unmedicated states showed, to negative valence paradigms, decrease in brain activity in the amygdala when participants were medicated. We also demonstrated, across both positive and negative valence paradigms, consistent decreases in brain activity in the medicated state in the anterior cingulate gyrus and insula. This is the first report of modulatory effects of repeated antidepressant use on the central representation of somatic states in response to emotions of both negative and positive valences in healthy individuals. Also, our results corroborate findings of antidepressant-induced temporolimbic activity changes to emotion-provoking stimuli obtained in studies of subjects treated acutely with such agents.
Resumo:
BACKGROUND: Therapeutic options for patients with advanced hepatocellular carcinoma (HCC) are limited. There is emerging evidence that the growth of cancer cells may be altered by very low levels of electromagnetic fields modulated at specific frequencies. METHODS: A single-group, open-label, phase I/II study was performed to assess the safety and effectiveness of the intrabuccal administration of very low levels of electromagnetic fields amplitude modulated at HCC-specific frequencies in 41 patients with advanced HCC and limited therapeutic options. Three-daily 60-min outpatient treatments were administered until disease progression or death. Imaging studies were performed every 8 weeks. The primary efficacy end point was progression-free survival >= 6 months. Secondary efficacy end points were progression-free survival and overall survival. RESULTS: Treatment was well tolerated and there were no NCI grade 2, 3 or 4 toxicities. In all, 14 patients (34.1%) had stable disease for more than 6 months. Median progression-free survival was 4.4 months (95% CI 2.1-5.3) and median overall survival was 6.7 months (95% CI 3.0-10.2). There were three partial and one near complete responses. CONCLUSION: Treatment with intrabuccally administered amplitude-modulated electromagnetic fields is safe, well tolerated, and shows evidence of antitumour effects in patients with advanced HCC. British Journal of Cancer (2011) 105, 640-648. doi:10.1038/bjc.2011.292 www.bjcancer.com Published online 9 August 2011 (C) 2011 Cancer Research UK
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
Introduction: Current advances in frame modeling and computer software allow stereotactic procedures to be performed with great accuracy and minimal risk of neural tissue or vascular injury. Case Report: In this report we associate a previously described minimally invasive stereotactic technique with state-of-the-art 3D computer guidance technology to successfully treat a 55-year-old patient with an arachnoidal cyst obstructing the aqueduct of Sylvius. We provide 1 detailed technical information and discuss how this technique deals with previous limitations for stereotactic manipulation of the aqueductal region. We further discuss current advances in neuroendoscopy for treating obstructive hydrocephalus and make comparisons with our proposed technique. Conclusion: We advocate that this technique is not only capable of treating this pathology but it also has the advantages to enable reestablishment of physiological CSF flow thus preventing future brainstem compression by cyst enlargement.
Resumo:
This study aimed to evaluate the neural response in double-array cochlear implant as well as to describe the refractory recovery and the spread of excitation functions. In a prospective study 11 patients were implanted with the double-array cochlear implant. Neural response telemetry (NRT) was performed intra-operatively. NRT threshold could be registered in 6 of the 11 patients, at least in one electrode. The remaining five patients did not show measurable neural response intra-operatively. It was noted that although recovery and spread of excitation functions could be recorded in all the tested electrodes with measurable neural responses, the responses were shown to be different from the usual register in patients with other etiologies.
Resumo:
Conclusion. The study shows that there are differences in the measurement of the action potentials with and without the stylet in the Nucleus Freedom Contour Advance that are higher in the apex than in the base of the cochlea. Objectives. To determine if there are differences in the intraoperative impedances and in the neural response telemetry threshold values in the Nucleus Freedom Contour Advance before and after stylet removal. Subjects and methods. This was a prospective clinical study. Intraoperative impedances and neural response telemetry in users of the Freedom Contour Advance Cochlear Implant were measured before and after stylet removal. Results. There was a significant reduction in the impedance values of an average 1.5 k Omega +/- 2.3 in common ground mode and 1.3 k Omega +/- 2.3 for all monopolar modes after the stylet removal (p < 0.001). When analyzing the apical, medium, and basal electrodes, there was a statistically significant reduction in the neural response thresholds after stylet removal only in the apical electrodes (p = 0.001).
Resumo:
Animal and human studies indicate that cannabidiol (CBD), a major constituent of cannabis, has anxiolytic properties. However, no study to date has investigated the effects of this compound on human pathological anxiety and its underlying brain mechanisms. The aim of the present study was to investigate this in patients with generalized social anxiety disorder (SAD) using functional neuroimaging. Regional cerebral blood flow (rCBF) at rest was measured twice using (99m)Tc-ECD SPECT in 10 treatment-naive patients with SAD. In the first session, subjects were given an oral dose of CBD (400 mg) or placebo, in a double-blind procedure. In the second session, the same procedure was performed using the drug that had not been administered in the previous session. Within-subject between-condition rCBF comparisons were performed using statistical parametric mapping. Relative to placebo, CBD was associated with significantly decreased subjective anxiety (p < 0.001), reduced ECD uptake in the left parahippocampal gyrus, hippocampus, and inferior temporal gyrus (p < 0.001, uncorrected), and increased ECD uptake in the right posterior cingulate gyrus (p < 0.001, uncorrected). These results suggest that CBD reduces anxiety in SAD and that this is related to its effects on activity in limbic and paralimbic brain areas.