127 resultados para Microorganisms.
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
Aim: In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Materials and methods: Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Results: Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 mu g/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10-4 and 10-5 the growth values (mean +/- SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1 +/- 0.7, 7.0 +/- 0.6 and 5.9 +/- 0.9 x 10(6) CFU, respectively. Conclusion: Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction: Endodontic treatment is commonly based on nonspecific elimination of intraradicular micro-organisms. Although some authors prefer single-visit root canal operations for endodontic treatment, several studies have shown the importance of intracanal medication between sessions to kill microorganisms that biomechanical preparations alone cannot achieve. The purpose of this study was to evaluate the efficacy of calcium hydroxide Ca(OH)2 and chlorhexidine gel on the elimination of intratubular Enterococcus faecalis. Methods: Human uniradicular teeth contaminated with E. faecalis were treated with Ca(OH)(2), 2% chlorhexidine gel, Ca(OH)(2) plus 2% chlorhexidine gel, or saline (0.9% NaCl) as a negative control. Samples obtained at a depth of 0 to 100 mu m and 100 to 200 mu m from these root canal preparations were analyzed for bacterial load by counting the number of colonyforming units (CFUs) and bacterial viability using fluorescence microscopy. Results: A significant decrease in the number of CFUs and the percentage of viable E. faecalis was observed after treatment with either Ca(OH)(2) or chlorhexidine when compared with the control group. Additionally, chlorhexidine gel had a significantly higher antimicrobial efficacy as measured by the number of CFUs and the percentage of viable cells than Ca(OH)(2). No differences were observed between the antimicrobial properties of chlorhexidine gel with and without the addition of Ca(OH)(2). Conclusion: Both Ca(OH)(2) and chlorhexidine have antimicrobial effects on E. faecalis. Chlorhexidine had increased antimicrobial activity when compared with Ca(OH)(2.) Ca(OH)(2) combined with chlorhexidine showed similar antimicrobial activity to chlorhexidine alone. (J Endod 2010;36:1389-1393)
Resumo:
The purpose of this study was to explore the potential of confocal laser scanning microscopy (CLSM) for in situ identification of live and dead Enterococcus faecalis in infected dentin. Eight cylindrical dentin specimens were infected with Enterococcus faecalis in BHI for 21 days. After the experimental period, the specimens were stained with fluorescein diacetate (FDA) and propidium iodide (PI) or acridine orange (0.01 %) and analyzed by CLSM. Two noninfected dentin specimens were used as negative controls. CLSM analysis shows that the discrimination between viable (green) and dead (red) bacteria in infected dentinal tubules could be observed after staining with FDA/PI. Acridine orange was able to show metabolic activity of the E. faecalis cells inside the dentinal tubules showed by its red fluorescence. The viability of bacteria in infected dentin can be determined in situ by CLSM. FDA/PI and acricline orange are useful for this technique.
Resumo:
Staphylococcus aureus strains can be disseminated during dental treatment and occasionally lead to contamination and infection of patients and dentists. The objective of this study was to determine the frequency and compare the number of S.aureus colonies isolated from the nose, hands and tongue of students and patients, as well as from the clinical environment, before and after dental treatment. Staphylococcus species were isolated from the tongue, nose and hands of 30 students and 30 patients and from the environment of a Pediatric Dentistry Clinic. The samples were incubated in SMA plates at 37 degrees C for 48 hours. Results: The colonies that showed the presence of mannitol fermentation were collected as identification for Staphylococcus aureus, using CHROMagar and the coagulase test. The highest amount of S.aureus was found in the nose and tongue of children. In relation to dental students, more contamination was observed on gloved hands, followed by the tongue and hands without gloves, before clinical attendance. At the end of dental treatment, S. aureus colonies isolated from the gloved hands of students decreased significantly. Considering the clinical environment, the most contaminated areas were the auxiliary table and the storeroom, which was located at the center of the clinic. Conclusion: The dental clinic can be considered an environment for S. aureus cross-transmission. Preventative measures should be used to avoid the dissemination of pathogenic microorganisms.
Resumo:
The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787
Resumo:
Objectives Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Materials and methods Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Results Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P < 0.05). Conclusion These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly. To cite this article:do Nascimento C, Pedrazzi V, Kirsten Miani P, Daher Moreira L, de Albuquerque Junior RF. Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.Clin. Oral Impl. Res. 20, 2009; 1394-1397.doi: 10.1111/j.1600-0501.2009.01769.x.