295 resultados para ISOLATED RAT ADIPOCYTES
Resumo:
This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanico variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
The vascular effects of nitrolinoleate (LNO(2)), an endogenous product of linoleic acid (LA) nitration by nitric oxide-derived species and a potential nitrosating agent, were investigated on rat endothelial-leukocyte interactions. Confocal microscopy analysis demonstrated that LNO(2) was capable to deliver free radical nitric oxide ((center dot)NO) into cells, 5 min after its administration to cultured cells, with a peak of liberation at 30 min. THP-1 monocytes incubated with LNO(2) for 5 min presented nitrosation of CD40, leading to its inactivation. Other anti-inflammatory actions of LNO(2) were observed in vivo by intravital microscopy assays. LNO(2) decreased the number of adhered leukocytes in postcapillary venules of the mesentery network. In addition to this, LNO(2) reduced mRNA and protein expression of 2-integrin in circulating leukocytes, as well as VCAM-1 in endothelial cells isolated from postcapillary venules, confirming its antiadhesive effects on both cell types. Moreover, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, partially abolished the inhibitory action of LNO(2) on leukocyte-endothelium interaction, suggesting that the antiadhesion effects of LNO(2) involve a dual role in leukocyte adhesion, acting as a nitric oxide donor as well as through nitric oxide-independent mechanisms. In conclusion, LNO(2) inhibited adhesion molecules expression and promoted (center dot)NO inactivation of the CD40-CD40L system, both important processes of the inflammatory response. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Hepatocellular carcinoma (HCC) ranks in prevalence and mortality among top 10 cancers worldwide. Butyric acid (BA), a member of histone deacetylase inhibitors (HDACi) has been proposed as an anticareinogenic agent. However, its short half-life is a therapeutical limitation. This problem could be circumvented with tributyrin (TB), a proposed BA prodrug. To investigate TB effectiveness for chemoprevention, rats were treated with the compound during initial phases of ""resistant hepatocyte"" model of hepatocarcinogenesis, and cellular and molecular parameters were evaluated. TB inhibited (p < 0.05) development of hepatic preneoplastic lesions (PNL) including persistent ones considered HCC progression sites. TB increased (p < 0.05) PNL remodeling, a process whereby they tend to disappear. TB did not inhibit cell proliferation in PNL, but induced (p < 0.05) apoptosis in remodeling ones. Compared to controls, rats treated with TB presented increased (P < 0.05) hepatic levels of BA indicating its effectiveness as a prodrug. Molecular mechanisms of TB-induced hepatocarcinogenesis chemoprevention were investigated. TB increased (p < 0.05) hepatic nuclear histone H3K9 hyperacetylation specifically in PNL and p21 protein expression, which could be associated with inhibitory HDAC effects. Moreover, it reduced (p < 0.05) the frequency of persistent PNL with aberrant cytoplasmic p53 accumulation, an alteration associated with increased malignancy. Original data observed in our study support the effectiveness of TB as a prodrug of BA and as an HDACi in hepatocarcinogenesis chemoprevention. Besides histone acetylation and p21 restored expression, molecular mechanisms involved with TB anticarcinogenic actions could also be related to modulation of p53 pathways. (C) 2008 Wiley-Liss, Inc.
Resumo:
The objective of the present study was to evaluate the occurrence of Salmonella spp. in 15 samples of pork meat cuts (T-bone, shank, sausage and ribs) commercialized in open markets of Pelotas (RS, Brazil) and verify the prevalent serovars, and test the isolates profile of sensitivity to several antibiotics of importance in medicine (nalidixic acid, ampicillin, aztreonam, kanamycin, carbenicillin, cephalothin, cefoxitin, ceftriaxone, ciprofloxacin, chloramphenicol, gentamicin, sulfonamide, tetracycline and trimetoprina). Twelve samples (80%) were contaminated by Salmonella enterica, serovars Infantis, Derby, Panama and Typhimurium. All isolates were susceptible to trimetoprin, aztreonam, ciprofloxacin, ceftriaxone and cefoxitin. For the other antibiotics, the pattern of sensitivity varied as serovar. In addition, 39.1% of isolates showed up to be multiresistant.
Resumo:
Rosiglitazone (RSG), a thiazolidinedione antidiabetic drug, is metabolized by CYP450 enzymes into two main metabolites: N-desmethyl rosiglitazone (N-Dm-R) and rho-hydroxy rosiglitazone (rho-OH-R). In humans, CYP2C8 appears to have a major role in RSG metabolism. On the other hand, the in vitro metabolism of RSG in animals has not been described in literature yet. Based on these concerns, the kinetic metabolism study of RSG using rat liver microsomal fraction is described for the first time. Maximum velocity (V (max)) values of 87.29 and 51.09 nmol/min/mg protein were observed for N-Dm-R and rho-OH-R, respectively. Michaelis-Menten constant (K (m)) values were of 58.12 and 78.52 mu M for N-Dm-R and rho-OH-R, respectively. Therefore, these results demonstrated that this in vitro metabolism model presents the capacity of forming higher levels of N-Dm-R than of rho-OH-R, which also happens in humans. Three other metabolites were identified employing mass spectrometry detection under positive electrospray ionization: ortho-hydroxy-rosiglitazone (omicron-OH-R) and two isomers of N-desmethyl hydroxy-rosiglitazone. These metabolites have also been observed in humans. The results observed in this study indicate that rats could be a satisfactory model for RSG metabolism.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.
Resumo:
The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 +/- 0.004 g) in relation to control (E(max) = 0.18 +/- 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 +/- 0.009 g) in relation to control (E(max) = 0.38 +/- 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 +/- 0.004 g) and contraction (E(max) = 0.34 +/- 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 +/- 0.012 g) and contraction (E(max) = 0.42 +/- 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 +/- 0.004 g) or contraction (E(max) = 0.54 +/- 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 +/- 435 U) in relation to control (10 455 +/- 303 U). SC236 reduced the fluorescence in contralateral samples (8250 +/- 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2)(-) derived from COX-2.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 mu M) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells. (C) 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.