158 resultados para INTRAVENOUS ALBUMIN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To evaluate the antiinflammatory effects of RC-3095 in 2 experimental models of arthritis, collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA), and to determine the mechanisms of action involved. Methods. RC-3095 was administered daily to mice with CIA and mice with AIA, after induction of disease with methylated bovine serum albumin. Disease incidence and severity were assessed using a clinical index and evaluation of histologic features, respectively. In mice with CIA, gastrin-releasing peptide receptor (GRPR) was detected by immunohistochemical analysis, while in mice with AIA, migration of neutrophils, presence of glycosaminoglycans, and lymphocyte proliferation, determined using the MTT assay, were assessed. Expression of cytokines interleukin-17 (IL-17), IL-1 beta, and tumor necrosis factor alpha (TNF alpha) was evaluated in all mouse knees using enzyme-linked immunosorbent assay. Treg cell production was assessed by flow cytometry in the joints of mice with AIA. Results. In mice with AIA, administration of RC-3095 reduced neutrophil migration, mechanical hypernociception, and proteoglycan loss. These findings were associated with inhibition of the levels of all 3 proinflammatory cytokines, decreased lymphocyte proliferation, and increased Treg cell numbers. In the CIA model, treatment with RC-3095 led to a significant reduction in arthritis clinical scores and the severity of disease determined histologically. Synovial inflammation, synovial hyperplasia, pannus formation, and extensive erosive changes were all dramatically reduced in the arthritic mice treated with RC-3095. Furthermore, arthritic mice treated with RC-3095 showed a significant reduction in the concentrations of IL-17, IL-1 beta, and TNF alpha, and showed a diminished expression of GRPR. Conclusion. These findings suggest that the GRP pathway has a significant role in chronic arthritis, and its inhibition can be explored as a possible therapeutic strategy in rheumatoid arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the cardiovascular effects of noradrenaline (NA) microinjection into the hypothalamic supraoptic nucleus (SON) as well as the central and peripheral mechanisms involved in their mediation. Microinjections of NA 1, 3, 10, 30 or 45 nmol/100 nL into the SON caused dose-related pressor and bradycardiac response in unanesthetized rats. The response to NA 10 nmol was blocked by SON pretreatment with 15 nmol of the alpha(2)-adrenoceptor antagonist RX821002 and not affected by pretreatment with equimolar dose of the selective alpha(1)-adrenoceptor antagonist WB4101, suggesting that local alpha(2)adrenoceptors mediate these responses. Pretreatment of the SON with the nonselective beta-adrenoceptor antagonist propranolol 15 nmol did not affect the pressor response to NA microinjection of into the SON. Moreover, the microinjection of the 100 nmol of the selective alpha(1)-adrenoceptor agonist methoxamine (MET) into the SON did not cause cardiovascular response while the microinjection of the selective alpha(2)adrenoceptor agonists BHT920 (BHT, 100 nmol) or clonidine (CLO, 5 nmol) caused pressor and bradycardiac responses, similar to that observed after the microinjection of NA. The pressor response to NA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium and was blocked by intravenous pretreatment with the V(1)-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP, suggesting an involvement of circulating vasopressin in this response. In conclusion, our results suggest that pressor responses caused by microinjections of NA into the SON involve activation of local alpha(2)-adrenoceptor receptors and are mediated by vasopressin release into circulation. (c) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we used the electronic version of the von Frey test to investigate the role of cytokines (TNF-alpha and IL-1 beta) and chemokines (KC/CXCL-1) in the genesis of mechanical hypernociception during antigen-induced inflammation in mice. The nociceptive test consisted of evoking a hindpaw flexion reflex with a hand-held force transducer (electronic anesthesiometer) adapted with a 0.5 mm(2) polypropylene tip. The intraplantar administration of methylated bovine serum albumin (mBSA) in previously immunized (IM), but not in sham-immunized (SI) mice, induced mechanical hypernociception in a dose-dependant manner. Hypernociception induced by antigen was reduced in animals pretreated with IL-lra and reparixin (a non-competitive allosteric inhibitor of CXCR2), and in TNF receptor type 1 deficient (TNFR1-/-) mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. The increase in TNF-alpha levels preceded the increase in IL-1 beta and KC/CXCL1. Antigen-induced release of IL-1 beta and KC/CXCL1 was reduced in TNFR1-/- mice, and TNF-alpha induced hypernociception was inhibited by IL-lra and reparixin. Hypernociception induced by IL-1 beta in immunized mice was inhibited by indomethacin, whereas KC/CXCL1-induced hypernociception was inhibited by indomethacin and guanethidine, Antigen-induced hypernociception was reduced by indomethacin and guanethidine and abolished by the two drugs combined. Together, these results suggest that inflammation associated with an adaptive immune response induces hypernociception that is mediated by an initial release of TNF-alpha, which triggers that subsequent release of IL-1 beta and KC/CXCL1. The latter cytokines in turn stimulate the release of the direct-acting final mediator, prostanoids and sympathetic amines. (C) 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylloquinone (vitamin K-1, VK1) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK1 on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK1 (0.5-20 mg kg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK1 were dose-dependent. On the other hand, intravenous injection of VK1 did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N-G-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mg kg(-1)) reduced both the increase and decrease in blood pressure induced by VK1 (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK1. However, VK1-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK1 induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK1 involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. Methods and results Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s) IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor a (TNF alpha) and IL-1 beta synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNF alpha antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNF alpha responded to IL-33 in chemotaxis. Conclusions These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNF alpha therapy of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we evaluated cardiac baroreflex responses of rats submitted to acute restraint stress. The baroreflex was tested: immediately before, during a 30 min exposure to restraint stress, as well as 30 and 60 min after ending the stress session (recovery period). Restraint increased both mean arterial pressure (MAP) and heart rate (HR). The magnitude of tachycardiac responses evoked by intravenous infusion of sodium nitroprusside was higher during restraint stress, whereas that of bradycardiac responses evoked by intravenous infusion of phenylephrine was decreased. Restraint-evoked baroreflex changes were still observed at 30 min into the recovery period, although MAP and HR values had already returned to control values. The baroreflex was back to control values at 60 min of the recovery period. Intravenous administration of the selective beta(1)-adrenoceptor antagonist atenolol blocked the restraint-evoked increase in the tachycardiac baroreflex response, but did not affect the effects on the bradycardiac response. In conclusion, the present results suggest that psychological stresses, such as those resulting from acute restraint, affect the baroreflex. Restraint facilitated the tachycardiac baroreflex response and reduced the bradycardiac response. Restraint-related effects on baroreflex persisted for at least 30 min after ending restraint, although MAP and HR had already returned to control levels. The cardiac baroreflex returned to control values 60 min after the end of restraint, indicating non-persistent effects of acute restraint on the baroreflex. Results also indicate that the influence of restraint stress on the baroreflex tachycardiac response is mainly dependent on cardiac sympathetic activity, whereas the action on the bradycardiac response is mediated by the cardiac parasympathetic component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Chemokines orchestrate neutrophil recruitment to inflammatory foci. In the present study, we evaluated the participation of three chemokines, KC/CXCL1, MIP-2/CXCL2 and LIX/CXCL5, which are ligands for chemokine receptor 2 (CXCR2), in mediating neutrophil recruitment in immune inflammation induced by antigen in immunized mice. Experimental approach: Neutrophil recruitment was assessed in immunized mice challenged with methylated bovine serum albumin, KC/CXCL1, LIX/CXCL5 or tumour necrosis factor (TNF)-alpha. Cytokine and chemokine levels were determined in peritoneal exudates and in supernatants of macrophages and mast cells by elisa. CXCR2 and intercellular adhesion molecule 1 (ICAM-1) expression was determined using immunohistochemistry and confocal microscopy. Key results: Antigen challenge induced dose- and time-dependent neutrophil recruitment and production of KC/CXCL1, LIX/CXCL5 and TNF-alpha, but not MIP-2/CXCL2, in peritoneal exudates. Neutrophil recruitment was inhibited by treatment with reparixin (CXCR1/2 antagonist), anti-KC/CXCL1, anti-LIX/CXCL5 or anti-TNF-alpha antibodies and in tumour necrosis factor receptor 1-deficient mice. Intraperitoneal injection of KC/CXCL1 and LIX/CXCL5 induced dose- and time-dependent neutrophil recruitment and TNF-alpha production, which were inhibited by reparixin or anti-TNF-alpha treatment. Macrophages and mast cells expressed CXCR2 receptors. Increased macrophage numbers enhanced, while cromolyn sodium (mast cell stabilizer) diminished, LIX/CXCL5-induced neutrophil recruitment. Macrophages and mast cells from immunized mice produced TNF-alpha upon LIX/CXCL5 stimulation. Methylated bovine serum albumin induced expression of ICAM-1 on mesenteric vascular endothelium, which was inhibited by anti-TNF-alpha or anti-LIX/CXCL5. Conclusion and implications: Following antigen challenge, CXCR2 ligands are produced and act on macrophages and mast cells triggering the production of TNF-alpha, which synergistically contribute to neutrophil recruitment through induction of the expression of ICAM-1.