161 resultados para INFLAMMATORY CYTOKINE PRODUCTION
Resumo:
Background: Despite clinical descriptions of severe vivax malaria cases having been reported, data regarding immunological and inflammatory patterns are scarce. In this report, the inflammatory and immunological status of both mild and severe vivax malaria cases are compared in order to explore immunopathological events in this disease. Methods and Results: Active and passive malaria case detections were performed during 2007 in Buritis, Rondonia, in the Brazilian Amazon. A total of 219 participants enrolled the study. Study individuals were classified according to the presence of Plasmodium vivax infection within four groups: non-infected (n = 90), asymptomatic (n = 60), mild (n = 50) and severe vivax infection (n = 19). A diagnosis of malaria was made by microscopy and molecular assays. Since at present no clear criteria define severe vivax malaria, this study adapted the consensual criteria from falciparum malaria. Patients with severe P. vivax infection were younger, had lived for shorter time in the endemic area, and recalled having experienced less previous malaria episodes than individuals with no malaria infection and with mild or asymptomatic infection. Strong linear trends were identified regarding increasing plasma levels of C reactive protein (CRP), serum creatinine, bilirubins and the graduation of disease severity. Plasma levels of tumour necrosis factor (TNF), interferon-gamma(IFN-gamma) and also IFN-gamma/interleukin-10 ratios were increased and exhibited a linear trend with gradual augmentation of disease severity. Both laboratory parameters of organ dysfunction and inflammatory cytokines were reduced during anti-parasite therapy in those patients with severe disease. Conclusion: Different clinical presentations of vivax malaria infection present strong association with activation of pro-inflammatory responses and cytokine imbalance. These findings are of utmost importance to improve current knowledge about physiopathological concepts of this serious widespread disease.
Resumo:
The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-alpha gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 +/- 3 minutes) when compared with EX group (425 +/- 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-alpha was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery.
Resumo:
Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cellular and humoral immune response, as well as cytokine gene expression, was assessed in Nelore cattle with different degrees of resistance to Cooperia punctata natural infection. One hundred cattle (male, weaned, 11-12 months old), kept together on pasture, were evaluated. Faecal and blood samples were collected for parasitological and immunological assays. Based on nematode faecal egg counts (FEC) and worm burden, the seven most resistant and the eight most susceptible animals were selected. Tissue samples of the small intestine were collected for histological quantification of inflammatory cells and analysis of cytokine gene expression (IL-2, IL-4, IL-8, IL-1 2p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, and MUC- 1) using real-time RT-PCR. Mucus samples were also collected for IgA levels determination. Serum IgG1 mean levels against C. punctata antigens were higher in the resistant group, but significant differences between groups were only observed 14 days after the beginning of the experiment against infective larvae (1-3) and 14 and 84 days against adult antigens. The resistant group also presented higher IgA levels against C. punctata (L3 and adult) antigens with significant difference 14 days after the beginning of the trial (P < 0.05). In the small-intestine mucosa, levels of IgA anti-L3 and anti-adult C. punctata were higher in the resistant group, compared with the susceptible group (P < 0.05). Gene expression of both T(H)2 cytokines (IL-4 and IL-13) in the resistant group and T(H)1 cytokines (IL-2, IL-1 2p35, IFN-gamma and MCP-1) in the susceptible group was up-regulated. Such results suggested that immune response to C. punctata was probably mediated by TH2 cytokines in the resistant group and by T(H)1 cytokines in the susceptible group. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In tfhis study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca(2+) in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.
Resumo:
We have shown that the ethanolic extract of Lafoensia pacari inhibits eosinophilic inflammation induced by Toxocara canis infection, and that ellagic acid is the secondary metabolite responsible for the anti-eosinophilic activity seen in a model of beta-glucan peritonitis. In the present study, we investigated the preventive and curative effects of L. pacari extract and ellagic acid on allergic lung inflammation using a murine model of ovalbumin-induced asthma. In bronchoalveolar lavage fluid, preventive (22-day) treatment with L. pacari (200 mg/kg) and ellagic acid (10 mg/kg) inhibited neutrophil counts (by 75% and 57%) and eosinophil counts (by 78% and 68%). L. pacari reduced IL-4 and IL-13 levels (by 67% and 73%), whereas ellagic acid reduced IL-4, IL-5 and IL-13 (by 67%, 88% and 85%). To investigate curative anti-inflammatory effects, we treated mice daily with ellagic acid (0.1, 1, or 10 mg/kg), also treating selected mice with L. pacari (200 mg/kg) from day 18 to day 22. The highest ellagic acid dose reduced neutrophil and eosinophil numbers (by 59% and 82%), inhibited IL-4, IL-5, and IL-13 (by 62%,61%, and 49%). Neither L. pacari nor ellagic acid suppressed ovalbumin-induced airway hyperresponsiveness or cysteinyl leukotriene synthesis in lung homogenates. In mice treated with ellagic acid (10 mg/kg) or L. pacari (200 mg/kg) at 10 min after the second ovalbumin challenge, eosinophil numbers were 53% and 69% lower, respectively. Cytokine levels were unaffected by this treatment. L. pacari and ellagic acid are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Background Very few studies have investigated, in the elderly, the effect of rheumatic inflammatory states on phagocyte function and free radical production. The objective of this article is to evaluate phagocytosis by neutrophils and the production of nitric oxide (.NO) by monocytes in elderly women recruited among patients of the Brazilian Public Health System. Methods: Forty patients aged more than 60 years with rheumatic inflammatory diseases were studied. Phagocytosis was measured by flow cytometry. .NO production was measured by the total nitrite assay and conventional inflammation markers were determined. Data were analyzed with the Mann Whitney nonparametric test and P<0.05 was considered significant. Results. C-reactive protein levels and white blood cell counts were significantly higher in inflammation than in the control group (P<0.05). The phagocytosis fluorescence intensity per neutrophil and the percentual of neutrophils expressing phagocytosis were significantly higher (P<0.05) in the test than in the control group. Furthermore, there was significant .NO overproduction by monocytes, (P<0.05). Conclusion: Phagocytosis and .NO production are affected by rheumatic states. This suggests that the increased .NO levels may play a part in the increased oxidative stress in rheumatic diseases in elderly women. J. Clin. Lab. Anal. 25:47-51, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Lactic acid is the predominant acid present in the vagina. We evaluated the consequences of lactic acid, at physiological levels present in the vagina, on cytokine responses of peripheral blood mononuclear cells (PBMCs) obtained from 10 individuals in the presence or absence of bacterial lipopolysaccharide. Preincubation of PBMCs in 15 mM lactic acid before the addition of lipopolysaccharide resulted in a 246% mean increase in interleukin-23 (IL-23) secretion over that released in the presence of lipopolysaccharide alone (P=0.0068). The lipopolysaccharide-induced production of tumor necrosis factor-alpha, IL-6, IL-10 and IL-12 was unaffected by lactic acid. IL-23 stimulation was not observed if the lactic acid was neutralized before its addition to the culture medium or if hydrochloric acid was substituted for lactic acid. In the absence of lipopolysaccharide, lactic acid did not stimulate the production of IL-23 or any of the other cytokines. The increase in IL-23 production was proportional to the lactic acid concentration over a 15-60 mM range. We conclude that at body sites characterized by lactic acid accumulation, such as in the human vagina, exposure to gram-negative bacteria results in selective IL-23 production, leading to a subsequent preferential stimulation of the Th17 T lymphocyte pathway.
Resumo:
Background/Aims: Cytokines have a significant role in the response to injury following liver transplantation, but the origin and course of such molecules are not completely known. The aim of this study was to evaluate the production and liver metabolism of the inflammatory cytokines interleukin (IL)-1 beta, IL-6, IL-8, interferon (IFN)-Y and tumor necrosis factor (TNF)-alpha in orthotopic liver transplantation (OLT), comparing the conventional and the piggyback methods. Methodology: We performed a study of 30 patients who underwent elective OLT and were randomized for the conventional or piggyback techniques at the beginning of the operation. The amount of cytokines and their hepatic metabolism were calculated based on plasma concentrations and vascular blood flow at 2, 5, 10, 15, 30, 60, 90, and 120 minutes after revascularization. Results: The amount of IL-1 beta in portal blood was higher in patients who underwent surgery using the conventional technique (estimate interest = 63,783.9 +/- 16,586.1 pg/min, versus 11,979.6 +/- 16,585.7 pg/min in the piggyback group, p=0.035). There were no significant differences between the two operative`s methods for IL-6, IL-8, IFN-Y and TNF-alpha production. The hepatic metabolism of cytokines was not different between groups. Although all the curves showed higher amounts of cytokines with the conventional technique, these were not statistically significant. Conclusion: The study shows the similarity between the two techniques concerning the stimuli for the production of inflammatory molecules.
Resumo:
The present study evaluates the effect of isolated fractions of Harpagophytum procumbens (devil`s claw) on cyclooxygenase (COX-1 and COX-2) activities and NO production using a whole blood assay. The activity of COX-1 was quantified as platelet thromboxane B(2) production in blood clotting and COX-2 as prostaglandin E(2) production in LPS-stimulated whole blood. Total NO(2)(-)/NO(3)(-) concentration was determined by Griess reaction in LPS stimulated blood. Assays were performed by incubation of isolated fractions obtained by flash chromatography monitored with HPLC, TLC and identified by (1)HNMR, containing different amounts of harpagoside with blood from healthy donors. Indomethacin and etoricoxib were the positive controls of COX-1 and COX-2 Inhibition. Data shows that fraction containing the highest concentration of harpagoside inhibited indistinctively COX-1 and COX-2 (37.2 and 29.5% respectively) activity and greatly inhibited NO production (66%). In contrast the fraction including iridoid pool increased COX-2 and did not alter NO and COX-1 activities. The fraction containing cinnamic acid was able to reduce only NO production (67%). Our results demonstrated that the harpagoside fraction is the main responsible for the effect of devils claw on these enzyme activities. However, other components from devil`s claw crude extract could antagonize or increase the synthesis of inflammatory mediators. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Fatty liver disease is a problem in both bariatric patients and in patients with moderate obesity. Tumor necrosis factor (TNF)-alpha has been frequently measured in nonalcoholic steatohepatitis (NASH) with or without diabetes, but less is known about interleukin (IL)-6 and IL-10. Moderately obese patients (n = 80) with histologically proven steatosis (n = 29) and NASH (n = 51) were recruited. Serum levels of cytokines were documented along with clinical information. The aim was to identify the correlates of such biomolecules in a stable population. Diabetes tended to be more associated with NASH (52.5% instead of 41.4%, P = 0.015), with no difference of age, gender, or body mass index regarding steatosis. For the entire population, cytokine changes were not significant, including TNF-alpha and IL-6. In diabetics only, all markers tended to diminish with NASH, especially IL-10 (P = 0.000). IL-10 correlated with homeostatic model assessment index (P = 0.000) and other variables of glucose homeostasis in diabetes, thus representing a major marker of the disease. (1) Generally inconsistent changes in pro- and anti-inflammatory cytokines occurred when NASH was globally compared to steatosis. (2) In contrast, downregulation of IL-6 and IL-10 was perceived in diabetics with NASH. (3) Arterial hypertension did not play a role in these circumstances. (4) IL-10 maintained strong correlations with glucose metabolism indices. (5) TNF-alpha could not be incriminated for progressive liver damage, as values failed to increase in NASH. (6) Investigations of IL-10 and other counterregulatory cytokines are lacking in this context and deserve further studies.
Resumo:
Indomethacin administration in animals increases permeability of the small intestine, leading to inflammation that mimics Crohn`s disease. Nonsteroidal anti-inflammatory drugs increase the permeability of the intestinal epithelial barrier and should therefore be used with caution in patients with Crohn`s disease. We analyzed the protective effects of octreotide and the tumor necrosis factor-alpha inhibitor infliximab in a rat model of indomethacin-induced enterocolitis. Male Wistar rats received 20 mg of infliximab or 10 mu g of octreotide 24 h prior to injection with indomethacin. Intestinal permeability was analyzed using Cr-51-ethylenediaminetetraacetic acid clearance. No microscopic or macroscopic alterations were observed in the rats receiving infliximab or octreotide, both of which increased permeability (P < 0.001 versus controls). Our macroscopic and microscopic findings might be related to the low specificity of infliximab and suggest that cytokines affect the intestinal epithelial barrier, as evidenced by the protective effect that infliximab had on the permeability parameters evaluated.
Resumo:
Objective: Gorticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: One hundred twenty-eight BALB/c mice (20-25 g). Interventions: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Gexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 mu g, ALIp) or intraperitoneally (125 mu g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALlexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results: At 24 hrs, lung state elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interieukin-6, and transforming growth factor (TGF)-beta levels in bronchoatveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta 1 and TGF-beta 2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFN gamma, and TGF-beta 2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions. Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.
Resumo:
Objectives: Intraperitoneal administration of trypsin stimulates the production of cytokines from peritoneal macrophages. Removing the pancreatitis-associated ascitic fluid from the peritoneal cavity may decrease the systemic inflammatory response in acute pancreatitis (AP). We investigated the effect of peritoneal lavage on the systemic inflammatory response in severe AP. Methods: Acute pancreatitis was induced in Wistar rats by 5% taurocholate intraductal injection. Peritoneal lavage was performed for 4 hours after onset of AP. At 4 hours after induction of AP, serum samples were assayed for amylase and inflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-10). Expression of pancreatic cyclooxygenase-2 and inducible nitric oxide synthase, liver mitochondrial function, and pulmonary myeloperoxidase activities were determined. Results: Peritoneal lavage after AP led to a decrease in serum levels of tumor necrosis factor alpha and IL-6 and an increase in IL-10. In the pancreas, this treatment reduced cyclooxygenase-2 and inducible nitric oxide synthase expression. Liver mitochondrial dysfunction was also reduced. There were no differences on serum amylase levels and pulmonary myeloperoxidase between groups with AP. Conclusions: Peritoneal lavage has a systemic anti-inflammatory effect in severe AP and may be able to decrease the severity of severe AP.