125 resultados para IMMUNE-RESPONSES
Resumo:
The type I and type II heat-labile enterotoxins (LT-I and LT-II) are strong mucosal adjuvants when they are coadministered with soluble antigens. Nonetheless, data on the parenteral adjuvant activities of LT-II are still limited. Particularly, no previous study has evaluated the adjuvant effects and induced inflammatory reactions of LT-II holotoxins or their B pentameric subunits after delivery via the intradermal (i.d.) route to mice. In the present report, the adjuvant and local skin inflammatory effects of LT-IIa and its B subunit pentamer (LT-IIaB(5)) were determined. When coadministered with ovalbumin (OVA), LT-IIa and, to a lesser extent, LT-IIaB(5) exhibited serum IgG adjuvant effects. In addition, LT-IIa but not LT-IIaB(5) induced T cell-specific anti-OVA responses, particularly in respect to induction of antigen-specific cytotoxic CD8(+) T cell responses. LT-IIa and LT-IIaB(5) induced differential tissue permeability and local inflammatory reactions after i.d. injection. Of particular interest was the reduced or complete lack of local reactions, such as edema and tissue induration, in mice i.d. inoculated with LT-IIa and LT-IIaB(5), respectively, compared with mice immunized with LT-I. In conclusion, the present results show that LT-IIa and, to a lesser extent, LT-IIaB(5) exert adjuvant effects when they are delivered via the i.d. route. In addition, the low inflammatory effects of LT-IIa and LT-IIaB(5) in comparison to those of LT-I support the usefulness of LT-IIa and LT-IIaB(5) as parenterally delivered vaccine adjuvants.
Resumo:
Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Anti-PCM vaccine formulations based on the secreted fungal cell wall protein (gp43) or the derived P10 sequence containing a CD4(+) T-cell-specific epitope have shown promising results. In the present study, we evaluated new anti-PCM vaccine formulations based on the intranasal administration of P. brasiliensis gp43 or the P10 peptide in combination with the Salmonella enterica FliC flagellin, an innate immunity agonist binding specifically to the Toll-like receptor 5, in a murine model. BALB/c mice immunized with gp43 developed high-specific-serum immunoglobulin G1 responses and enhanced interleukin-4 (IL-4) and IL-10 levels. On the other hand, mice immunized with recombinant purified flagellins genetically fused with P10 at the central hypervariable domain, either flanked or not by two lysine residues, or the synthetic P10 peptide admixed with purified FliC elicited a prevailing Th1-type immune response based on lung cell-secreted type 1 cytokines. Mice immunized with gp43 and FliC and intratracheally challenged with P. brasiliensis yeast cells had increased fungal proliferation and lung tissue damage. In contrast, mice immunized with the chimeric flagellins and particularly those immunized with P10 admixed with FliC reduced P. brasiliensis growth and lung damage. Altogether, these results indicate that S. enterica FliC flagellin modulates the immune response to P. brasiliensis P10 antigen and represents a promising alternative for the generation of anti-PCM vaccines.
Resumo:
In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.
Resumo:
Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58 Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2(d)-restricted CD8(+) T cell-specific epitope (CS(280-288)) derived from the Plasmodium yoelii circumsporozoite (G) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS(280-288) peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS(280-288) peptide. The results showed that CS(280-288)-specific cytotoxic CD8(+) T cells were primed when BALB/c mice were orally inoculated with the expressing the CS280-288 epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS280-288 peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8(+) T cell responses without the need of a heterologous booster immunization. The CD8(+) T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c(+) dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations. (C) 2009 Elsevier Ltd. All rights reserved.