125 resultados para GALACTIC DISC
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p < 0.05) than that of dentin, whereas all cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p < 0.05). Portland cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p < 0.05), whereas Portland cement/zinc oxide presented the lowest radiopacity values of all mixtures (p < 0.05). All tested substances presented higher radiopacity than that of dentin and may potentially be added to the Portland cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done. (J Endod 2009,35:737-740)
Resumo:
This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acidetched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha=0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). The application of NIP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.
Resumo:
The dorsal surface of the tongue of the bullfrog, Rana catesbeiana, has simple columnar epithelium with a few ciliated cells and goblet cells. The entire surface is covered with numerous filiform papillae and few fungiform. Filiform papillae have a simple columnar epithelium with secretory cells, while the fungiform have a sensory disc on their upper surface the lined by a stratified columnar epithelium with basal, peripheral, glandular and receptor cells. Over the dorsal lingual surface there are numerous winding tubular glands, which penetrate deeply into the muscle of the tongue, mingling with the fibers. The gland epithelium is cylindrical with secretory and supporting cells. The first are absolute on the basis of the gland and the latter are rare in the upper third. The ventral surface of the tongue is lined by a stratified epithelium, with the presence of goblet cells, with ciliated cells among them. Morphometrically, lingual glands varies in length, according to their location: shorter in the anterior region of the tongue (330 mu m) than in the posterior region (450 mu m). Secretory cells of the anterior lingual glands are smaller (1457.7 mm(3)) than the posterior ones (2645.9 mu m(3)). The same can be said of the cell nuclei, 130.0 mu m(3) for the anterior glands and 202.3 mu m(3) for the posterior ones. Secretory cells of the lingual glands contain substances rich in protein and neutral mucopolysaccharides, which characterize the seromucous type. Goblet cells of the dorsal and ventral surface epithelia secrete neutral mucopolysaccharides and proteins, and can be characterized as type G1 cells, and the supporting cells of the superficial glands of the fungiform papillae secrete a mucus rich in neutral mucopolysaccharides, sulfomucins and sialomucins.
Resumo:
The research diagnostic criteria for temporomandibular disorders (RDC/TMD) are used for the classification of patients with temporomandibular disorders (TMD). Surface electromyography of the right and left masseter and temporalis muscles was performed during Maximum teeth clenching in 103 TMD patients subdivided according to the RDC/TMD into 3 non-overlapping groups: (a) 25 myogenous; (b) 61 arthrogenous; and (c) 17 psycogenous patients. Thirty-two control subjects matched for sex and age were also measured. During clenching, standardized total muscle activities (electromyographic potentials over time) significantly differed: 131.7 mu V/mu V s % in the normal subjects, 117.6 mu V/mu V s % in the myogenous patients, 105.3 mu V/mu V s % in the arthrogenous patients, 88.7 mu V/mu V s % in the psycogenous patients (p < 0.001, analysis of covariance). Symmetry in the temporalis muscles was larger in normal subjects (86.3%) and in myogenous patients (84.9%) than in arthrogenous (82.7%), and psycogenous patients (80.5%) (p=0.041). No differences were found for masseter muscle symmetry and torque coefficient (p>0.05). Surface electromyography of the masticatory muscles allowed an objective discrimination among different RDC/TMD subgroups. This evaluation could assist conventional clinical assessments. (C) 2007 Elsevier Ltd. All rights reserved.