122 resultados para Femur, HIP, Finite element, Strain, Cement
Resumo:
Background. Researchers have proposed the restoration of abfraction lesions, but limited information is available about the effects of occlusal loading on the margins of such restorations. Because abfraction is a well-recognized problem, the authors conducted a study to assess the effects of occlusal loading on the margins of cervical restorations. Methods. The authors prepared 40 wedge-shaped cavities in extracted premolars and restored them with a resin-based composite. They subjected specimens to occlusal loading (150 newtons, 101 cycles) on the buccal cusp, on the central fossa or on the lingual cusp, and they stored 1 the control group, specimens in deionized water. The authors used fluorescein to delimit marginal defects and evaluated the defects by using laser scanning confocal microscopy. Results. Results of chi(2) and Kruskal-Wallis tests (P < .05) showed that specimens subjected to occlusal loading had a higher percentage of marginal gaps (53.3 percent) than did the control specimens (10.0 percent). There were no differences between groups in marginal defect formation or in defect location, length or width. Conclusions. Occlusal loading led to a significant increase in gap formation at the margins of cervical resin-based composite restorations. Clinical Implications. The clinician cannot underestimate the effects of occlusal loading When restoring teeth with cervical wedge-shaped lesions. If occlusal loading is the main factor contributing to lesion formation, the clinician should identify and treat it before placing the restoration or otherwise run the risk that the restorative treatment will fail because of marginal gap formation.
Resumo:
This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.