124 resultados para Exercise - Vibration
Resumo:
Purpose. aEuro integral Heart rate variability (HRV) decreases after an acute myocardial infarction (AMI) due to changes in cardiac autonomic balance. The purpose of the present study, therefore, was to evaluate the effects of a progressive exercise protocol used in phase I cardiac rehabilitation on the HRV of patients with post-AMI. Material and methods. aEuro integral Thirty-seven patients who had been admitted to hospital with their first non-complicated AMI were studied. The treated group (TG, n == 21, age == 52 +/-+/- 12 years) performed a 5-day programme of progressive exercise during phase I cardiac rehabilitation, while the control group (CG, n == 16, age == 54 +/-+/- 11 years) performed only respiratory exercises. Instantaneous heart rate (HR) and RR interval were acquired by a HR monitor (Polar (R) A (R) S810i). HRV was analysed by frequency domain methods. Power spectral density was expressed as normalised units (nu) at low (LF) and high (HF) frequencies, and as LF/HF. Results. aEuro integral After 5 days of progressive exercise, the TG showed an increase in HFnu (35.9 +/-+/- 19.5 to 65.19 +/-+/- 25.4) and a decrease in LFnu and LF/HF (58.9 +/-+/- 21.4 to 32.5 +/-+/- 24.1; 3.12 +/-+/- 4.0 to 1.0 +/-+/- 1.5, respectively) in the resting position (p < 0.05). No changes were observed in the CG. Conclusions. aEuro integral A progressive physiotherapeutic exercise programme carried out during phase I cardiac rehabilitation, as supplement to clinical treatment increased vagal and decreased sympathetic cardiac modulation in patients with post-AMI.
Resumo:
Exercise-induced bronchospasm (EIB) is the transient narrowing of the airways that follows vigorous exercise. Ipratropium bromide may be used to prevent EIB, but its effect varies among individuals. We hypothesized that time of administration of ipratropium interferes with its action. This was a prospective, double-blind, cross-over study carried out to evaluate the bronchoprotective and bronchodilatory effect of ipratropium at different times of day. The study consisted of 4 exercise challenge tests (2 at 7 am and 2 at 6 pm). In the morning, one of the tests was performed after placebo administration and the other one after ipratropium (80 mu g) and the two tests (placebo and ipratropium) were repeated in the evening. Twenty-one patients with severe or moderate asthma and previous confirmation of EIB were enrolled in this prospective trial. The bronchodilatory effect of ipratropium was 0.25 +/- 0.21 L or 13.11 +/- 10.99 % (p = 0.001 compared to baseline values) in the morning, and 0.14 +/- 0.25 L or 7.25 +/- 11.37 % (p > 0.05) in the evening. In the morning, EIB was 0.58 +/- 0.29 L on the placebo day and 0.38 +/- 0.22 L on the treatment day (p = 0.01). In the evening, EIB was 0.62 +/- 0.28 L on the placebo day and 0.51 +/- 0.35 L on the treatment day (p > 0.05). We suggest that the use of ipratropium for the treatment of asthma and EIB should take into consideration the time of administration.
Resumo:
Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? (C) 2008 Wiley-Liss, Inc.
Resumo:
Objective: Exercise training improves plasma lipid profile and diminishes risk of coronary heart disease. Previously, we showed that training increases LDL plasma clearance, as tested by an artificial LDL-like nanoemulsion method, presumably by increasing LDL receptor activity. In this study, we investigated whether training could also improve LDL clearance in hypercholesterolemic subjects (HCh) that are exposed to increased risk of cardiovascular events. Methods: Twenty sedentary HCh and 20 normolipidemic (NL) sedentary volunteers were divided into four groups: 12 HCh submitted to 4-month training program, 8 HCh with no exercise program, 12 NL submitted to 4-month training and 8 NL with no exercise program. An LDL-like nanoemulsion labeled with 14C-cholesteryl ester was injected intravenously into all subjects and plasma samples were collected during 24h after injection to determine the fractional clearance rate (FCR, in h-1) by compartmental analysis. The study was performed on the first and on the last day of the 4-month study period. Results: In both, trained HCh and NL groups, training increased nanoemulsion FCR by 36% (0.0443 +/- 0.0126; 0.0602 +/- 0.0187, p=0.0187 and 0.0503 +/- 0.0203; 0.0686 +/- 0.0216, p=0.0827, respectively). After training, LDL cholesterol diminished in both HCh and NL groups. In HCh, but not in NL group, LDL susceptibility to oxidation decreased, but oxidized LDL was unchanged. In both non-trained groups FCR was the same for the last and the 4-month previous evaluation. Conclusion: In HCh, exercise training increased the removal of LDL as tested by the nanoemulsion, and this probably accounted for decreased LDL cholesterol and diminished LDL susceptibility to oxidation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.