142 resultados para Estado Terminal
Resumo:
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 mu g/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox`s lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.
Resumo:
Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
An inhibitory protein that neutralizes the enzymatic, toxic and pharmacological activities of several phospholipases A(2) from Bothrops venoms was isolated from B. jararacussu snake plasma by affinity chromatography using the immobilized myotoxin BthTX-I on Sepharose gel. Biochemical characterization of this inhibitory protein, denominated alpha BjussuMIP, showed it to be an oligomeric glycoprotein with M-r of 24,000 for the monomeric subunit. Secondary structural analysis by circular dichroism revealed 44% alpha-helix, 18% beta-sheet, 10% beta-turn and 28% random coil structures. Circular dichroism spectroscopy indicated that no significant alterations in the secondary structure of either alpha BjussuMIP or the target protein occur following their interaction. The product from the reaction with reverse transcriptase produced a cDNA fragment of 432 bp that codifies for a mature protein of 144 amino acid residues. The first 21 amino acid residues from the N-terminal and five tryptic peptides were characterized by mass spectrometry of the mature protein and confirmed by the nucleotide sequence. Alignment of alpha BjussuMIP with other snake inhibitors showed a sequence similarity of 73-92% with these alpha PLIs. alpha BjussuMIP was relatively stable within the pH range of 6-12 and temperatures from 0 degrees C to 80 degrees C, even after deglycosylation. The results showed effects against Bothrops phospholipase A(2) activities (enzymatic, edema inducing, myotoxic, cytotoxic and bactericidal), suggesting that alpha BjussuMIP may prove useful in the treatment of snakebite envenomations. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Sonogashira cross-coupling reactions involving (E)-iodo vinyl stannanes and terminal acetylenes were carried out in the presence of Pd(PPh(3))(4), Cul and several amines, affording (Z)-tributylstannyl enynes in moderate to good yields (62-91%). Utilizing the catalytic system containing Pd(PPh(3))(4) (5%), Cul (10%), and TBAOH (40% in aqueous media) as activator, better yields (72-91%) and lower reaction times were achieved. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Aminoacyl-transfer RNA (tRNA) synthetases (aaRS) are key players in translation and act early in protein synthesis by mediating the attachment of amino acids to their cognate tRNA molecules. In plants, protein synthesis may occur in three subcellular compartments (cytosol, mitochondria, and chloroplasts), which requires multiple versions of the protein to be correctly delivered to its proper destination. The organellar aaRS are nuclear encoded and equipped with targeting information at the N-terminal sequence, which enables them to be specifically translocated to their final location. Most of the aaRS families present organellar proteins that are dual targeted to mitochondria and chloroplasts. Here, we examine the dual targeting behavior of aaRS from an evolutionary perspective. Our results show that Arabidopsis thaliana aaRS sequences are a result of a horizontal gene transfer event from bacteria. However, there is no evident bias indicating one single ancestor (Cyanobacteria or Proteobacteria). The dual-targeted aaRS phylogenetic relationship was characterized into two different categories (paralogs and homologs) depending on the state recovered for both dual-targeted and cytosolic proteins. Taken together, our results suggest that the dual-targeted condition is a gain-of-function derived from gene duplication. Selection may have maintained the original function in at least one of the copies as the additional copies diverged.
Resumo:
Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Context: GLI2 is a transcription factor downstream in Sonic Hedgehog signaling, acting early in ventral forebrain and pituitary development. GLI2 mutations were reported in patients with holoprosencephaly (HPE) and pituitary abnormalities. Objective: The aim was to report three novel frameshift/nonsense GLI2 mutations and the phenotypic variability in the three families. Setting: The study was conducted at a university hospital. Patients and Methods: The GLI2 coding region of patients with isolated GH deficiency (IGHD) or combined pituitary hormone deficiency was amplified by PCR using intronic primers and sequenced. Results: Three novel heterozygous GLI2 mutations were identified: c. 2362_2368del p. L788fsX794 (family 1), c. 2081_2084del p. L694fsX722 (family 2), and c. 1138 G > T p. E380X (family 3). All predict a truncated protein with loss of the C-terminal activator domain. The index case of family 1 had polydactyly, hypoglycemia, and seizures, and GH, TSH, prolactin, ACTH, LH, and FSH deficiencies. Her mother and seven relatives harboring the same mutation had polydactyly, including two uncles with IGHD and one cousin with GH, TSH, LH, and FSH deficiencies. In family 2, a boy had cryptorchidism, cleft lip and palate, and GH deficiency. In family 3, a girl had hypoglycemia, seizures, excessive thirst and polyuria, and GH, ACTH, TSH, and antidiuretic hormone deficiencies. Magnetic resonance imaging of four patients with GLI2 mutations and hypopituitarism showed a hypoplastic anterior pituitary and an ectopic posterior pituitary lobe without HPE. Conclusion: We describe three novel heterozygous frameshift or nonsense GLI2 mutations, predicting truncated proteins lacking the activator domain, associated with IGHD or combined pituitary hormone deficiency and ectopic posterior pituitary lobe without HPE. These phenotypes support partial penetrance, variable polydactyly, midline facial defects, and pituitary hormone deficiencies, including diabetes insipidus, conferred by heterozygous frameshift or nonsense GLI2 mutations. (J Clin Endocrinol Metab 95: E384-E391, 2010)
Resumo:
Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.
Resumo:
Endomyocardial fibrosis (EMF) is a restrictive cardiomyopathy of unknown etiology prevalent in tropical regions affecting the inflow tract and apex of one or both ventricles, which show fibrous thickening of the endocardium and adjacent myocardium. Surgical treatment is recommended for patients in functional classes III or IV (New York Heart Association). The gross and histological features of the heart have been comprehensively studied in autopsies, but studies in surgical samples are still lacking. Histological and immunohistochemical features of EMF in surgical samples collected from 32 patients were described and correlated with clinical data. Polymerase chain reaction (PCR) and reverse transcription-PCR, performed on formalin fixed endomyocardial samples, were used retrospectively to detect genomes of certain cardiotropic viruses and Toxoplasma gondii. Ventricular endocardium was thickened by superficial acellular hyaline collagen fibers type I and III, with predominance of the former type. Besides fibrosis, a chronic inflammatory process and an anomalous lymphatic rich vascular pattern were observed in the deep endocardium, connected to the terminal coronary circulation of the myocardium, which might be an important pathological finding concerning EMF pathogenesis. Molecular analysis of the endomyocardium revealed high incidence of cardiotropic infective agents (6/12, 50%); however, their role in the disease pathogenesis is still controversial.
Resumo:
Deletion of the long arm of chromosome 18 is one of the most common segmental aneusomies compatible with life and usually involves a deletion of the terminal chromosomal region. However, the mechanisms implicated in the stabilization of terminal deletions are not well understood. In this study, we analyzed a girl with moderate mental retardation who had a cytogenetically visible terminal 18q deletion. In order to characterize the breakpoint in the terminal 18q region, we used fluorescence In situ hybridization (FISH) with bacterial artificial chromosomes (BACs) and pan-telomeric probes and also the array technique based on comparative genomic hybridization (array-CGH). FISH with pan-telomeric probes revealed no signal in the terminal region of the deleted chromosome, indicating the absence of normal telomere repeat (TTAGGG)n sequences in 18q. We suggest that neo-telomere formation by chromosome healing was involved in the repair and stabilization of this terminal deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: Splanchnic perfusion is prone to early injury and persists despite normalization of global hemodynamic variables in sepsis. Volume replacement guided by oxygen derived variables has been recommended in the management of septic patients. Our hypothesis was that a hypertonic isoneotic solution Would improve the benefits of crystalloids replacement guided by mixed venous oxygen saturation. Methods: Seventeen anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live E. coli in 30 minutes. They were then randomized into three groups: control group (n = 3) bacterial infusion without treatment; normal saline (n = 7), initial fluid replacement with 32 mL/kg of normal saline during 20 minutes; hypertonic solution (n = 7), initial fluid replacement with 4 mL/kg of hypertonic solution during 5 minutes. After 30 and 60 Minutes, additional boluses of normal saline were administered when mixed venous oxygen saturation remained below 70%. Mean arterial pressure, cardiac output; regional blood flows, systemic and regional oxygen-derived variables, and lactate levels were assessed. Animals were observed for 90 minutes and then killed. Hystopathological analysis including apoptosis detection using terminal deoxynucleotidil transferase mediated dUTP-biotin nick end labeling was performed. Results: A hypodynamic septic shock was observed after bacterial infusion. Both the fluid-treated groups presented similar transient benefits in systemic and regional variables. A greater degree of gut epithelial cells apoptosis was observed in normal saline-treated animals. Conclusions: Although normalization of mixed venous oxygen saturation was not associated with restoration of markers of splanchnic or other systemic perfusion variables, the initial fluid savings with hypertonic saline and its latter effect on gut apoptosis may be of interest in sepsis management.
Resumo:
The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.
Resumo:
In the kallikrein-kinin and renin-angiotensin systems the main receptors, B-1 and B-2 (kinin receptors) and AT(1) and AT(2) (angiotensin receptors) respectively, are seven-transmembrane domain G-protein-coupled receptors. Considering that the B, agonists Des-Arg(9)-BK (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe), Lys-desArg(9)-BK or Des-Arg(10)-KD (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe) and the AT, agonist (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) have the same two residues at the C-terminal region (i.e. Pro-Phe), we hypothesized that TM V and TM VI of the B-1 receptor could play an essential role in agonist binding and activity, being these regions receptor sites for binding the C-terminal sequences of Des-Arg-kinins similarly to that observed to AT, receptor. To investigate this hypothesis, we replaced Arg(212) for Ala at the top of the TM V and the sequence 274-282 (CPYHFFAFL) in TM VI of the rat kinin B, receptor by the 32 receptor homologous sequence, 289-297 (FPFQISTFL) and subsequently analyzed the consequences of these mutations by competition binding and functional assays. Despite correct expression, observed at the mRNA and protein level by RT-PCR and confocal microscopy, respectively, no agonist binding and function was verified for the mutated receptors. Therefore, our results suggest an important role for Arg(212) in the TM V and a region of TM VI of rat B, receptor in the interaction with the C-terminal residues of Des-Arg-kinins, similar to that observed with AngII. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.