122 resultados para Espectroscopia de Raman


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.