344 resultados para Economics, General|Environmental Sciences
Resumo:
The introduction of allochthonous fish species happens constantly in large bodies of freshwater, like as the reservoirs of Parana Basin, located in Brazilian southeast, representing a threat for local biodiversity. The fish species Plagioscion squamosissimus and Cichla ocellaris were introduced from the 1970s in several water bodies of this basin and had successfully established themselves in all six reservoirs located in the middle and lower Tiete River (SP, Brazil), particularly. After six decades from the first recorded species introduction, this hydrographic system remains open to the invasion of further fish species, owing to widespread fish-farming activity and by the channels opened between this system and other reservoirs and river basin. This study was an effort to confirm the Geophagus proximus occurrence in the six Tiete River reservoirs, verifying the actual introduction status and analyzing its potential environmental impacts on local species by the analysis of the population structure (abundance, body dimensions and feeding habits). By the results, this species was confirmed in the Ibitinga, Nova Avanhandava and Tres Irmaos reservoirs. The abundance and feeding analysis shows, respectively, it is successfully established in the Tres Irmaos reservoir with the same feeding habitats of local species, such as Geophagus brasiliensis. It was further shown to be very likely that G. proximus would spread throughout the reservoir system of the middle and lower Tiete River, in the manner of P. squamosissimus and C. ocellaris, and the competition pressure for food resources between G. proximus and the local species which represents a potential environmental impact system. These scientific evidences fortifies the knowledge basin for the implantation of a fish management system, to control and reduce the abundance of the invader and to prevent its becoming established in all the Tiete River Basin, avoiding the disastrous consequences for the native species of Parana River Basin.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5,1.0, 2.0 and 3.0 g SW(4)(2-)L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-)L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-)L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
Artesian confined aquifers do not need pumping energy, and water from the aquifer flows naturally at the wellhead. This study proposes correcting the method for analyzing flowing well tests presented by Jacob and Lohman (1952) by considering the head losses due to friction in the well casing. The application of the proposed correction allowed the determination of a transmissivity (T = 411 m(2)/d) and storage coefficient (S = 3 x 10(-4)) which appear to be representative for the confined Guarani Aquifer in the study area. Ignoring the correction due to head losses in the well casing, the error in transmissivity evaluation is about 18%. For the storage coefficient the error is of 5 orders of magnitude, resulting in physically unacceptable value. The effect of the proposed correction on the calculated radius of the cone of depression and corresponding well interference is also discussed.
Resumo:
This study investigates the feasibility of an anaerobic bioreactor for treating low contents of organic matter to generate organic acids and hydrogen. The device employed for this purpose was a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater and operated with hydraulic retention times from 0.5 to 2 h. A microbial biofilm was developed without previous inoculation, using expanded clay beads (4.8-6.3 mm) as support material. Alkalinity was found to be the main parameter affecting the production of hydrogen and organic acids, and the system produced optimal output when operating without a buffer agent. The average hydrogen production was 2.48, 2.15 and 1.81 molH(2) mol(-1) of glucose for NaHCO3 influent concentrations of 0, 1000 and 2000 mg L-1, respectively. The operational regime of the bioreactor, the support material and the controlled alkalinity were effective in selecting and immobilizing microbial fermenting biofilms, which successfully produced hydrogen and organic acids throughout the operating period. Exploratory assays indicated the feasibility of organic acid extraction using an anionic polymeric resin. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The impact of ozone oxidation on removing high molecular weight (HMW) organics in order to improve the biodegradability of alkaline bleach plant effluent was investigated using a semi-batch reactor under different initial pH (12 and 7). After the ozonation process, the ratio of BOD5/COD increased from 0.07 to 0.16 and 0.22 for initial pH 12 and 7, respectively. Also, the effluent color decreased by 48% and 61% at initial pH 12 and pH 7, respectively. These changes were primarily driven by reductions of the HMW fractions of the effluent during ozonation.
Resumo:
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in Sao Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated two different support materials (polystyrene and expanded clay) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBRs contained either polystyrene (R1) or expanded clay (R2) as support materials were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C and a pH of approximately 5.5. The AFBRs were operated with a range of hydraulic retention times (HRTs) between 1 and 8 h. For R1 with an HRT of 2 h, the maximum hydrogen yield (HY) was 1.90 mol H(2) mol(-1) glucose, with 0.805 mg of biomass (as total volatile solids, or TVS) attached to each g of polystyrene. For R2 operated at an HRT of 2 h, the maximum HY was 2.59 mol H(2) moll glucose, with 1.100 mg of attached biomass (as TVS) g(-1) expanded clay. The highest hydrogen production rates (HPR) were 0.95 and 1.21 L h(-1) L(-1) for R1 and R2, respectively, using an HRT of 1 h. The H(2) content increased from 16-47% for R1 and from 22-51% for R2. No methane was detected in the biogas produced throughout the period of AFBR operation. These results show that the values of HY, HPR, H(2) content, and g of attached biomass g(-1) support material were all higher for AFBRs containing expanded clay than for reactors containing polystyrene. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study aimed to determine the efficiency of an anaerobic stirred sequencing-batch reactor containing granular biomass for the degradation of linear alkylbenzene sulfonate (LAS), a surfactant present in household detergent. The bioreactor was monitored for LAS concentrations in the influent, effluent and sludge, pH, chemical oxygen demand, bicarbonate alkalinity, total solids, and volatile solids. The degradation of LAS was found to be higher in the absence of co-substrates (53%) than in their presence (24-37%). Using the polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE), we identified populations of microorganisms from the Bacteria and Archaea domains. Among the bacteria, we identified uncultivated populations of Arcanobacterium spp. (94%) and Opitutus spp. (96%). Among the Archaea, we identified Methanospirillum spp. (90%), Methanosaeta spp. (98%), and Methanobacterium spp. (96%). The presence of methanogenic microorganisms shows that LAS did not inhibit anaerobic digestion. Sampling at the last stage of reactor operation recovered 61 clones belonging to the domain bacteria. These represented a variety of phyla: 34% shared significant homology with Bacteroidetes, 18% with Proteobacteria, 11% with Verrucomicrobia, 8% with Fibrobacteres, 2% with Acidobacteria, 3% with Chlorobi and Firmicutes, and 1% with Acidobacteres and Chloroflexi. A small fraction of the clones (13%) were not related to any phylum. Published by Elsevier Ltd.
Resumo:
This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8-3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H(2) Mol(-1) glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H(2) Mol(-1) glucose. The biogas produced was composed of H(2) and CO(2), and the H(2) content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H(2) fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1-53.3% and 37.7-44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried Out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed: and simplified procedures to estimate the methane generation potential, L(o), and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values L(o) and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA (R)) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA (R) type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity. (C) 2007 Elsevier B.V. All rights reserved.