189 resultados para COMPACT ELLIPTIC GALAXY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new insight on NGC 6034 and UGC 842, two groups of galaxies previously reported in the literature as being fossil groups. The study is based on optical photometry and spectroscopy obtained with the CTIO Blanco telescope and Sloan Digital Sky Survey archival data. We find that NGC 6034 is embedded in a large structure, dominated by three rich clusters and other small groups. Its first and next four ranked galaxies have magnitude differences in the r band and projected distances which violate the optical criteria to classify it as a fossil group. We confirm that the UGC 842 group is a fossil group, but with about half the velocity dispersion that is reported in previous works. The velocity distribution of its galaxies reveals the existence of two structures in its line of sight, one with sigma(nu) similar to 223 km s(-1) and another with sigma(nu) similar to 235 km s(-1), with a difference in velocity of similar to 820 km s(-1). The main structure is dominated by passive galaxies, while these represent similar to 60% of the second structure. The X-ray temperature for the intragroup medium of a group with such a velocity dispersion is expected to be kT similar to 0.5-1 keV, against the observed value of kT similar to 1.9 keV reported in the literature. This result makes UGC 842 a special case among fossil groups because (1) it represents more likely the interaction between two small groups, which warms the intragroup medium and/or (2) it could constitute evidence that member galaxies lost energy in the process of spiraling toward the group center, and decreased the velocity dispersion of the system. As far as we know, UGC 842 is the first low-mass fossil group studied in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L(thick) = 2.0 kpc, assuming L(thin) = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We present lithium abundance determination for a sample of K giant stars in the Galactic bulge. The stars presented here are the only 13 stars with a detectable lithium line (6767.18 angstrom) among similar to 400 stars for which we have spectra in this wavelength range, half of them in Baade's Window (b = -4 degrees) and half in a field at b = -6 degrees. Methods. The stars were observed with the GIRAFFE spectrograph of FLAMES mounted on VLT, with a spectral resolution of R similar to 20 000. Abundances were derived from spectral synthesis and the results are compared with those of stars with similar parameters, but no detectable Li line. Results. We find 13 stars with a detectable Li line, among which 2 have abundances A(Li) > 2.7. No clear correlations were found between the Li abundance and those of other elements. With the exception of the two most Li rich stars, the others follow a fairly tight A(Li) - T(eff) correlation. Conclusions. There is strong indication of a Li production phase during the red giant branch (RGB), acting either on a very short timescale, or selectively only in some stars. That the proposed Li production phase is associated with the RGB bump cannot be excluded, although our targets are significantly brighter than the predicted RGB bump magnitude for a population at 8 kpc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods. We analyzed images obtained with the ROSAT satellite, covering similar to 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which similar to 40 members are added. The other, which we name the ""GU CMa"" cluster, is new, and contains similar to 60 members. The ROSAT sources are young stars with masses down to M(star) similar to 0.5 M(circle dot), and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. TWA22 was initially regarded as a member of the TW Hydrae association (TWA). In addition to being one of the youngest (approximate to 8 Myr) and nearest (approximate to 20 pc) stars to Earth, TWA22 has proven to be very interesting after being resolved as a tight, very low-mass binary. This binary can serve as a very useful dynamical calibrator for pre-main sequence evolutionary models. However, its membership in the TWA has been recently questioned despite due to the lack of accurate kinematic measurements. Aims. Based on proper motion, radial velocity, and trigonometric parallax measurements, we aim here to re-analyze the membership of TWA22 to young, nearby associations. Methods. Using the ESO NTT/SUSI2 telescope, we observed TWA22 AB during 5 different observing runs over 1.2 years to measure its trigonometric parallax and proper motion. This is a part of a larger project measuring trigonometric parallaxes and proper motions of most known TWA members at a sub-milliarcsec level. HARPS at the ESO 3.6 m telescope was also used to measure the system's radial velocity over 2 years. Results. We report an absolute trigonometric parallax of TWA22 AB, pi = 57.0 +/- 0.7 mas, corresponding to a distance 17.5 +/- 0.2 pc from Earth. Measured proper motions of TWA 22AB are mu(alpha) cos(delta) = -175.8 +/- 0.8 mas/yr and mu delta = -21.3 +/- 0.8 mas/yr. Finally, from HARPS measurements, we obtain a radial velocity V(rad) = 14.8 +/- 2.1 km s(-1). Conclusions. A kinematic analysis of TWA22 AB space motion and position implies that a membership of TWA22 AB to known young, nearby associations can be excluded except for the beta Pictoris and TW Hydrae associations. Membership probabilities based on the system's Galactic space motion and/or the trace-back technique support a higher chance of being a member to the beta Pictoris association. Membership of TWA22 in the TWA cannot be fully excluded because of large uncertainties in parallax measurements and radial velocities and to the uncertain internal velocity dispersion of its members.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. To detect line effects using spectropolarimetry in order to find evidence of rotating disks and their respective symmetry axes in T Tauri stars. Methods. We used the IAGPOL imaging polarimeter along with the Eucalyptus-IFU to obtain spectropolarimetric measurements of the T Tauri stars RY Tau (two epochs) and PX Vul (one epoch). Evidence of line effects showing a loop in the Q-U diagram favors a compact rather than an extended source for the line photons in a rotating disk. In addition, the polarization position angle (PA) obtained using the line effect can constrain the symmetry axis of the disk. Results. RY Tau shows a variable H alpha double peak in 2004-2005 data. A polarization line effect is evident in the Q-U diagram for both epochs confirming a clockwise rotating disk. A single loop is evident in 2004 changing to a linear excursion plus a loop in 2005. Interestingly, the intrinsic PA calculated using the line effect is consistent between our two epochs (similar to 167 degrees). An alternative intrinsic PA computed from the interstellar polarization-corrected continuum and averaged between 2001-2005 yielded a PA similar to 137 degrees. This last value is closer to perpendicular to the observed disk direction (similar to 25 degrees), as expected from single scattering in an optically thin disk. For PX Vul, we detected spectral variability in H alpha along with non-variable continuum polarization when compared with previous data. The Q-U diagram shows a well-defined loop in H alpha associated with a counter-clockwise rotating disk. The symmetry axis inferred from the line effect has a PA similar to 91 degrees (with an ambiguity of 90 degrees). Our results confirm previous evidence that the emission line in T Tauri stars has its origin in a compact source scattered off a rotating accretion disk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5 < [Fe/H] < +0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized. Results. We confirm the well-established differences for [alpha/Fe] at a given metallicity between the local thin and thick disks. For all the elements investigated, we find no chemical distinction between the bulge and the local thick disk, in agreement with our previous study of C, N and O but in contrast to other groups relying on literature values for nearby disk dwarf stars. For -1.5 < [Fe/H] < -0.3 exactly the same trend is followed by both the bulge and thick disk stars, with a star-to-star scatter of only 0.03 dex. Furthermore, both populations share the location of the knee in the [alpha/Fe] vs. [Fe/H] diagram. It still remains to be confirmed that the local thick disk extends to super-solar metallicities as is the case for the bulge. These are the most stringent constraints to date on the chemical similarity of these stellar populations. Conclusions. Our findings suggest that the bulge and local thick disk stars experienced similar formation timescales, star formation rates and initial mass functions, confirming thus the main outcomes of our previous homogeneous analysis of [O/Fe] from infrared spectra for nearly the same sample. The identical a-enhancements of thick disk and bulge stars may reflect a rapid chemical evolution taking place before the bulge and thick disk structures we see today were formed, or it may reflect Galactic orbital migration of inner disk/bulge stars resulting in stars in the solar neighborhood with thick-disk kinematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe and present initial results of a weak lensing survey of nearby (z less than or similar to 0.1) galaxy clusters in the Sloan Digital Sky Survey (SDSS). In this first study, galaxy clusters are selected from the SDSS spectroscopic galaxy cluster catalogs of Miller et al. and Berlind et al. We report a total of seven individual low-redshift cluster weak lensing measurements that include A2048, A1767, A2244, A1066, A2199, and two clusters specifically identified with the C4 algorithm. Our program of weak lensing of nearby galaxy clusters in the SDSS will eventually reach similar to 200 clusters, making it the largest weak lensing survey of individual galaxy clusters to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims. The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods. We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 mu m) and two filters in the Q band (17.65 and 19.50 mu m), using the VLT/VISIR instrument. Results. Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of approximate to 9-10 mu m, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0 '' from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9 '' west of the star, is particularly bright and compact. Conclusions. The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.