162 resultados para Boolean lattice
Resumo:
Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have studied by numerical simulations the relaxation of the stochastic seven-state Potts model after a quench from a high temperature down to a temperature below the first-order transition. For quench temperatures just below the transition temperature the phase ordering occurs by simple coarsening under the action of surface tension. For sufficient low temperatures however the straightening of the interface between domains drives the system toward a metastable disordered state, identified as a glassy state. Escaping from this state occurs, if the quench temperature is nonzero, by a thermal activated dynamics that eventually drives the system toward the equilibrium state. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study by numerical simulations the time correlation function of a stochastic lattice model describing the dynamics of coexistence of two interacting biological species that present time cycles in the number of species individuals. Its asymptotic behavior is shown to decrease in time as a sinusoidal exponential function from which we extract the dominant eigenvalue of the evolution operator related to the stochastic dynamics showing that it is complex with the imaginary part being the frequency of the population cycles. The transition from the oscillatory to the nonoscillatory behavior occurs when the asymptotic behavior of the time correlation function becomes a pure exponential, that is, when the real part of the complex eigenvalue equals a real eigenvalue. We also show that the amplitude of the undamped oscillations increases with the square root of the area of the habitat as ordinary random fluctuations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.
Resumo:
We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.
Resumo:
Particle conservation lattice-gas models with infinitely many absorbing states are studied on a one-dimensional lattice. As one increases the particle density, they exhibit a phase transition from an absorbing to an active phase. The models are solved exactly by the use of the transfer matrix technique from which the critical behavior was obtained. We have found that the exponent related to the order parameter, the density of active sites, is 1 for all studied models except one of them with exponent 2.
Resumo:
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.
Resumo:
We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
By using the NeXSPheRIO code, we study the elliptic-flow fluctuations in Au + Au collisions at 200 A GeV. It is shown that, by fixing the parameters of the model to correctly reproduce the charged pseudorapidity and the transverse-momentum distributions, reasonable agreement of < v(2)> with data is obtained, both as function of pseudorapidity as well as of transverse momentum, for charged particles. Our results on elliptic-flow fluctuations are in good agreement with the recently measured data on experiments.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work involved an investigation to ascertain how the substitution of nickel ions for zinc ions affects the structural, morphological and magnetic properties of NiFe(2)O(4) ferrite samples. Ni(1-x)Zn(x)Fe(2)O(4) (x = 0.0, 0.3 0.5, 0.7) powders were prepared by combustion reaction and characterized structurally by X-ray diffraction. The specific surface area of the powders was determined by the nitrogen adsorption method (BET). Magnetization measurements were taken using an alternative gradient magnetometer (AGM), which revealed that the powders prepared by combustion reaction resulted in nanosized particles with a particle size of 18-27 nm. The crystallite size and lattice parameter increased as the concentration of Zn increased. Moreover, augmenting the Zn content in the NiFe(2)O(4) ferrite increased the saturation magnetization and coercive field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f(7) electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.