138 resultados para radial-inflow turbine
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an analysis of a reconfigurable patch filter based on a triple-mode circular patch resonator with four radial slots. The analysis has been carried out thanks to the development of a new theoretical approach of the tunable patch filter based on the coupling matrix. The coefficients of the coupling matrix related to the tunable behavior have been identified and some rules for their evolution have been derived. For a proof-of-concept, a bandpass filter has been designed with a continuous tunability obtained with varactors connected across the slots. State-of-the-art results have been obtained, with a frequency tuning range of 27% from 1.95 to 2.43 GHz and a change in fractional bandwidth from 8.5% to 31.5% for the respective frequencies. In the entire tuning range, the return loss is better than 10 dB and the maximum insertion loss is 2 dB. Due to the newly developed coupling matrix, measurements, simulations, and theory showed great agreement.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Back in 1970s and 1980s, cogeneration plants in sugarcane mills were primarily designed to consume all bagasse, and produce steam and electricity to the process. The plants used medium pressure steam boilers (21 bar and 300 degrees C) and backpressure steam turbines. Some plants needed also an additional fuel, as the boilers were very inefficient. In those times, sugarcane bagasse did not have an economic value, and it was considered a problem by most mills. During the 1990s and the beginning of the 2000s, sugarcane industry faced an open market perspective, thus, there was a great necessity to reduce costs in the production processes. In addition, the economic value of by-products (bagasse, molasses, etc.) increased, and there was a possibility of selling electricity to the grid. This new scenario led to a search for more advanced cogeneration systems, based mainly on higher steam parameters (40-80 bar and 400-500 degrees C). In the future, some authors suggest that biomass integrated gasification combined cycles are the best alternative to cogeneration plants in sugarcane mills. These systems might attain 35-40% efficiency for the power conversion. However, supercritical steam cycles might also attain these efficiency values, what makes them an alternative to gasification-based systems. This paper presents a comparative thermoeconomic study of these systems for sugarcane mills. The configurations studied are based on real systems that could be adapted to biomass use. Different steam consumptions in the process are considered, in order to better integrate these configurations in the mill. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A thermodynamic information system for diagnosis and prognosis of an existing power plant was developed. The system is based on an analytic approach that informs the current thermodynamic condition of all cycle components, as well as the improvement that can be obtained in the cycle performance by the elimination of the discovered anomalies. The effects induced by components anomalies and repairs in other components efficiency, which have proven to be one of the main drawbacks in the diagnosis and prognosis analyses, are taken into consideration owing to the use of performance curves and corrected performance curves together with the thermodynamic data collected from the distributed control system. The approach used to develop the system is explained, the system implementation in a real gas turbine cogeneration combined cycle is described and the results are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Tree-rings have frequently been used for dating of trees and to determine annual growth increments and forest dynamics, but little is known in tropical conditions about their utilization for environmental monitoring. This paper presents the results of Araucaria columnaris tree-ring characterization by wood anatomy and X-ray densitometric analysis and the determination of Pb concentration. Core samples from twelve araucaria trees were extracted from two sites exposed to air pollution due to intense traffic of vehicles and industrial activities. The tree-rings distinctly presented radial variation in early-latewood thickness and density, and characteristics of juvenile and mature wood. Anatomical and X-ray densitometric analysis were useful to delimit the tree-ring boundaries and to date the tree-rings, as well as to prove the annual formation. The lead concentration in annual araucaria tree-rings, analyzed with graphite furnace atomic absorption spectrometry, indicated the seasonal presence of the heavy metal in the environment during the 30 years studied, although the Pb did not affect tree growth. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Mahogany trees, Swietenia macrophylla, occur in open rainforest, semi deciduous and deciduous and dense rainforest of Peruvian Amazonian tropical forest. They occur, preferentially, in areas with a defined dry season, with typical phenology and seasonal variation activity, forming distinct tree-rings. The present work had as aim to determine the wood density radial variation of 14 mahogany trees, of two populations of the Peruvian Amazonian tropical forest, through the X-ray densitometry and to evaluate their application as methodology, compared to the classic method of measurement table, for the determination of the treering width. The radial wood apparent density of the trees profiles rendered it possible to delimit the areas of juvenile-adult wood and of the heartwood-sapwood, relative to the anatomical structure and chemical composition differences, due to the extractives and the vessels obstruction by tyloses. The mean, minimum and maximum wood apparent density of the mahogany trees for the Populations A and B were of 0.70; 0.29; 1.01 g.cm(-3) and 0.81; 0.29; 1.19 g.cm(-3), respectively. The analysis of the variance and mean test indicate differences of mean wood density among the mahogany trees of each population, probably due to the age of the trees. There was no correlation between mean wood density of mahogany trees among the two populations, as well as, between the tree-ring width and the respective mean density. The X-ray densitometry technique is an important tool in the evaluation of the radial variation of wood apparent density and the delimitation of tree-ring boundaries, with correlations of 0.94 and 0.93 in relation to measurement table, for each sampled population.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.
Resumo:
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Six antifungal agents at subinhibitory concentrations were used for investigating their ability to affect the growth and branching in Neurospora crassa. Among the antifungals herein used, the azole agent ketoconazole at 0.5 mu g/ml inhibited radial growth more than fluconazole at 5.0 mu g/ml while amphotericin B at 0.05 mu g/ml was more effective than nystatin at 0.05 mu g/ml. Morphological alterations in hyphae were observed in the presence of griseofulvin, ketoconazole and terbinafine at the established concentrations. The antifungal agents were more effective on vegetative growth than on conidial germination. Terbinafine markedly reduced growth unit length (GU) by 54.89%, and caused mycelia to become hyperbranched. In all cases, there was a high correlation between hyphal length and number of tips (r > 0.9). All our results showed highly significant differences by ANOVA, (p < 0.001, alpha = 0.05). Considering that the hyphal tip is the main interface between the fungus and its environment/through which enzymes and toxins are secreted and nutrients absorbed, it would not be desirable to obtain a hyperbranched mycelia with inefficient doses of antifungal drugs.
Resumo:
Stibadocerina Alexander, a monotypic genus, includes the only known Neotropical species of the family Cylindrotomidae, S. chilensis Alexander, 1929, from South Central Chile (ca. 36 degrees 50`S-42 degrees 17`S). In this paper, Stibadocerina chilensis is redescribed and illustrated in detail. A study of wing-vein homology in the subfamily Stibadocerinae is provided, to identify the components of the reduced radial sector in Stibadocerina and related taxa. The proposed hypotheses of wing-vein homology are tested, and the systematic position of Stibadocerina is assessed through a cladistic analysis of 13 characters of the male imago, scored for exemplar species of the four genera included in the Stibadocerinae. A single most parsimonious tree supports the monophyly of the Stibadocerinae and the following relationships among its included genera: Stibadocerodes [Stibadocera (Stibadocerella + Stibadocerina)]. The subfamily includes one example of a vicariant distribution with a sister-group relationship between South Central Chilean and East Asian taxa, and supports a biogeographical interpretation of an ancestral trans-Pacific biota.
Resumo:
Background/Aims: The aim of this study is to compare the splanchnic non-hepatic hemodynamics and the metabolic changes during orthotopic liver transplantation between the conventional with bypass and the piggyback methods. Methodology: A prospective, consecutive series of 59 primary transplants were analyzed. Oxygen consumption, glucose, potassium, and lactate metabolism were quantitatively estimated from blood samples from the radial artery and portal vein, collected up to 120 minutes after graft reperfusion. Mean arterial pressure, portal venous pressure, portal venous blood flow, and splanchnic vascular resistance were also measured or calculated at postreperfusion collection times. Results: There was a greater increase in portal venous blood flow (p=0.05) and lower splanchnic vascular resistance (p=0.04) in the piggyback group. Mean arterial pressure and portal venous pressure were similar for both groups. Oxygen, glucose and potassium consumption were higher in the piggyback group, but none of the metabolic parameters differed significantly between groups. Conclusions: In conclusion, the study detected a higher portal venous blood flow and a lower and splanchnic vascular resistance associated with the piggyback technique. After graft reperfusion, no difference in the splanchnic non-hepatic metabolic parameters was observed between the conventional with bypass and the piggyback methods of orthotopic liver transplantation.
Resumo:
Bliacheriene F, Carmona MJC, Barretti CFM, Haddad CMF, Mouchalwat ES, Bortlotto MRFL, Francisco RPV, Zugaib M - Use of a Minimally Invasive Uncalibrated Cardiac Output Monitor in Patients Undergoing Cesarean Section under Spinal Anesthesia: Report of Four Cases. Background and Objectives: Hemodynamic changes are observed during cesarean section under spinal anesthesia. Non-invasive blood pressure (BP) and heart rate (HR) measurements are performed to diagnose these changes, but they are delayed and inaccurate. Other monitors such as filling pressure and cardiac output (CO) catheters with external calibration are very invasive or inaccurate. The objective of the present study was to report the cardiac output measurements obtained with a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia. Case report: After approval by the Ethics Commission, four patients agreed to participate in this study. They underwent cesarean section under spinal anesthesia while at the same time being connected to the LiDCO rapid by a radial artery line. Cardiac output, HR, and BP were recorded at baseline, after spinal anesthesia, after fetal and placental extraction, and after the infusion of oxytocin and metaraminol. We observed a fall in BP with an increase of HR and CO after spinal anesthesia and oxytocin infusion; and an increase in BP with a fall in HR and CO after bolus of the vasopressor. Conclusions: Although this monitor had not been calibrated, it showed a tendency for consistent hemodynamic data in obstetric patients and it may be used as a therapeutic guide or experimental tool.
Resumo:
AVFs may be considered the best type of venous access for chronic hemodialysis in pediatric patients with more than 20 kg who are not likely to receive a kidney transplant or be transitioned to peritoneal dialysis within one yr. The aim of the study was to report the experience in the creation of AVFs in pediatric candidates for renal transplantation using microsurgical vascular techniques, with emphasis on the details of the surgical technique. Forty children underwent 50 fistula creations - 31 radial-cephalic, 11 brachial-cephalic, five brachial-basilic and three saphenous-femoral. The vein was anastomosed to the artery in an end-to-lateral fashion by using two separate 8/0 prolene running sutures. The overall patency rate was 76.0%:22 (70.9%) of the radial-cephalic fistulas, nine (81.8%) of the brachial-cephalic, five (100.0%) of the brachial-basilic and two (66.6%) of the saphenous-femoral. There was no significant difference in patency rates between the brachial-cephalic, brachial-basilic and radial-cephalic fistulas. The incidences of fistula patency were not different for patients weighing < 20 kg compared with patients weighing > 20 kg. AVF remains as a satisfactory method for providing hemodialysis in children. The utilization of microsurgical techniques with some technical refinements described herein permits the achievement of high fistula patency rates.
Resumo:
To determine reference values for tissue Doppler imaging (TDI) and pulsed Doppler echocardiography for left ventricular diastolic function analysis in a healthy Brazilian adult population. Observations were based on a randomly selected healthy population from the city of Vitoria, Espirito Santo, Brazil. Healthy volunteers (n = 275, 61.7% women) without prior histories of cardiovascular disease underwent transthoracic echocardiography. We analyzed 175 individuals by TDI and evaluated mitral annulus E`- and A`-waves from the septum (S) and lateral wall (L) to calculate E`/A` ratios. Using pulsed Doppler echocardiography, we further analyzed the mitral E- and A-waves, E/A ratios, isovolumetric relaxation times (IRTs), and deceleration times (DTs) of 275 individuals. Pulsed Doppler mitral inflow mean values for men were as follows: E-wave: 71 +/- 16 cm/sec, A-wave: 68 +/- 15 cm/sec, IRT: 74.8 +/- 9.2 ms, DT: 206 +/- 32.3 ms, E/A ratio: 1.1 +/- 0.3. Pulsed Doppler mitral inflow mean values for women were as follows: E-wave: 76 +/- 17, A-wave: 69 +/- 14 cm/sec, IRT: 71.2 +/- 10.5 ms, DT: 197 +/- 33.3 ms, E/A ratio: 1.1 +/- 0.3. IRT and DT values were higher in men than in women (P = 0.04 and P = 0.007, respectively). TDI values in men were as follows: E`S: 11 +/- 3 cm/sec, A`S: 13 +/- 2 cm/sec, E`S/A`S: 0.89 +/- 0.2, E`L: 14 +/- 3 cm/sec, A`L: 14 +/- 2 cm/sec, E`L/A`L: 1.1 +/- 0.4. E-wave/ E`S ratio: 6.9 +/- 2.2; E-wave / E`L ratio: 4.9 +/- 1.7. In this study, we determined pulsed Doppler and TDI derived parameters for left ventricular diastolic function in a large sample of healthy Brazilian adults. (Echocardiography 2010;27:777-782).