145 resultados para oxidized nanotubes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is a thiol-rich metallopeptidase ubiquitously distributed in mammalian tissues and involved in oligopeptide metabolism both within and outside cells. Fifteen Cys residues are present in the rat EP24.15 protein, seven are solvent accessible, and two are found inside the catalytic site cleft; no intraprotein disulfide is described. In the present investigation, we show that mammalian immunoprecipitated EP24.15 is S-glutathionylated. In vitro EP24.15 S-glutathionylation was demonstrated by the incubation of bacterial recombinant EP24.15 with oxidized glutathione concentration as low as 10 mu M. The in vitro S-glutathionylation of EP24.15 was responsible for its oxidative oligomerization to dimer and trimer complexes. EP24.15 immunoprecipitated from cells submitted to oxidative challenge showed increased trimeric forms and decreased S-glutathionylation compared to immunoprecipitated protein from control cells. Our present data also show that EP24.15 maximal enzymatic activity is maintained by partial S-glutathionylation, a mechanism that apparently regulates the protein oligomerization. Present results raise the possibility of an unconventional property of protein S-glutathionylation, inducing oligomerization by interprotein thiol-disulfide exchange. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scavenger or Fc gamma receptors are important for capture and clearance of modified LDL particles by monocytes/macrophages. Uptake via scavenger receptors is not regulated by intracellular levels of cholesterol and in consequence, macrophages develop into foam cells in the arterial intima. The levels of scavenger receptor CD36 are increased in atherosclerotic lesions and there is evidence that some components of oxLDL auto-regulate the expression of this receptor. Fc gamma receptor expression is increased in cardiovascular diseases but it is not known weather their expression is regulated by oxLDL. The biological properties of oxLDLs vary depending on the degree of oxidation. In the present study we investigated the effect of LDL particles showing extensive or low oxidation (HoxLDL and LoxLDL) on the expression of CD36 and Fc gamma RII in a human monocytic cell line (THP-1), differentiated or not to macrophage, and the involvement of PPAR gamma. It was found that both forms of oxLDL are able to increase the expression of CD36 and Fc gamma RII and that this effect is dependent on the degree of oxidation and of the stage of cell differentiation ( monocyte or macrophage). We also showed that the increased expression of Fc gamma RII is dependent on PPAR. whereas that of the CD36 is independent of PPAR gamma. Copyright (c) 2008 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uptake of oxLDL by CD36 is not regulated by intracellular levels of cholesterol, leading to macrophage differentiation into foam cells which play a major role in atherosclerosis. Furthermore, oxLDL competes with PAF in macrophages for binding to PAF receptors (PAFR). Here we investigated the involvement of PAFR in CD36 expression and uptake of oxLDL by human monocytes/macrophages. Adherent peripheral blood mononuclear cells were treated with PAFR-antagonists (WEB2170, CV3988); inhibitors of ERK1/2 (PD98059), p38 (SB203580), JNK (SP600125) or diluents, before stimulation with oxLDL or PAF. After 24 h, uptake of FITC oxLDL and expression of CD36 was determined by flow cytometry and phosphorylation of MAP-kinases by Western blot. It was shown that the uptake of oxLDL was reduced by PAFR antagonists. CD36 expression was up-regulated by oxLDL, an effect reversed by PAFR antagonists. The up-regulation of CD36 and oxLDL uptake both required MAP-kinases activation. The oxLDL induced ERK1/2 and JNK but not p38 phosphorylation was reversed by PAFR-antagonists suggesting that oxLDL signalling involves PAFR dependent and independent pathways. In macrophages from PAFR(-/-) mice, oxLDL was unable to up-regulate CD36 expression and the oxLDL uptake was reduced compared to wild type. These results suggest that oxLDL interacts with PAFR in macrophages to increase CD36 expression and oxLDL uptake. Whereas pharmacological intervention at the level of PAFR would be beneficial in atherosclerosis remains to be determined. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic aerosol (OA) in the atmosphere consists of a multitude of organic species which are either directly emitted or the products of a variety of chemical reactions. This complexity challenges our ability to explicitly characterize the chemical composition of these particles. We find that the bulk composition of OA from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H: C versus O:C), characterized by a slope of similar to-1. The data show that atmospheric aging, involving processes such as volatilization, oxidation, mixing of air masses or condensation of further products, is consistent with movement along this line, producing a more oxidized aerosol. This finding has implications for our understanding of the evolution of atmospheric OA and representation of these processes in models. Citation: Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi: 10.1029/2010GL042737.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a systematic study of SO2 molecules interacting with pristine and transition metal (TM) covered C-60 is presented by means of first principles calculations. It is observed that the SO2 molecule interacts weakly with the pristine C-60 fullerene, although the resulting interaction is largely increased when the C-60 structure is covered with Fe, Mn, or Ti atoms and the SO2 Molecules are bounded through the TM atoms. The number of bounded SO2 molecules per TM atoms, in addition to the elevated binding energies per molecules, allows us to conclude that such composites can be used as a template for efficient devices to remove SO2 molecules or, alternatively, as SO2 gas sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes rank amongst potential candidates for a new family of nanoscopic devices, in particular for sensing applications. At the same time that defects in carbon nanotubes act as binding sites for foreign species, our current level of control over the fabrication process does not allow one to specifically choose where these binding sites will actually be positioned. In this work we present a theoretical framework for accurately calculating the electronic and transport properties of long disordered carbon nanotubes containing a large number of binding sites randomly distributed along a sample. This method combines the accuracy and functionality of ab initio density functional theory to determine the electronic structure with a recursive Green`s functions method. We apply this methodology on the problem of nitrogen-rich carbon nanotubes, first considering different types of defects and then demonstrating how our simulations can help in the field of sensor design by allowing one to compute the transport properties of realistic nanotube devices containing a large number of randomly distributed binding sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green`s functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.