107 resultados para multi-channel processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishment of a treatment plan is based on efficacy and easy application by the clinician, and acceptance by the patient. Treatment of adult patients with Class III malocclusion might require orthognathic surgery, especially when the deformity is severe, with a significant impact on facial esthetics. Impacted teeth can remarkably influence treatment planning, which should be precise and concise to allow a reasonably short treatment time with low biologic cost. We report here the case of a 20-year-old man who had a skeletal Class III malocclusion and impaction of the maxillary right canine, leading to remarkable deviation of the maxillary midline; this was his chief complaint. Because of the severely deviated position of the impacted canine, treatment included extraction of the maxillary right canine and left first premolar for midline correction followed by leveling, alignment, correction of compensatory tooth positioning, and orthognathic surgery to correct the skeletal Class III malocclusion because of the severe maxillary deficiency. This treatment approach allowed correction of the maxillary dental midline discrepancy to the midsagittal plane and establishment of good occlusion and optimal esthetics. (Am J Orthod Dentofacial Orthop 2010;137:840-9)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.