217 resultados para molecular biophysics
Resumo:
Plasmodium vivax Merozoite Surface Protein-3 alpha and 3 beta are members of a family of related merozoite surface proteins that contain a central alanine-rich domain with heptad repeats that is predicted to form alpha-helical secondary and coiled-coil tertiary structures. Seven recombinant proteins representing different regions of MSP-3 alpha and MSP-3 beta of P. vivax were generated to investigate their structure. Circular dichroism spectra analysis revealed that some proteins are folded with a high degree of alpha-helices as secondary structure, whereas other products contain a high content of random coil. Using size exclusion chromatography, we found that the two smaller fragments of the MSP-3 alpha, named CC4 and CC5, predicted to form coiled-coil (CC) structures, eluted at volumes corresponding to molecular weights larger than their monomeric masses. This result suggests that both proteins are oligomeric molecules. Analytical ultracentrifugation experiments showed that the CC5 oligomers are elongated molecules. Together, these data may help to understand important aspects of P. vivax biology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chagas` disease, infection caused by the protozoan Trypanosoma cruzi, is an important, social and medical ailment in the Latin America. This disease is endemic in 21 countries, mostly Latin America countries, with more than 300,000 new cases every year and about 16-18 million infected people. Current therapy is not effective in the chronic phase of the disease. Thus, new and better drugs are urgently needed. In this sense, the in vitro activity of primaquine (PQ) was reported. Based on this, peptide prodrugs of primaquine containing dipeptides - lysine-arginine (LysArg), phenylalanine-alanine (PheAla) and phenylalanine-arginine (PheArg) -- as carriers, were designed to be selectively cleaved by cruzain, a specific cysteine protease of T. cruzi. The prodrugs have shown to be active against tripomastigote forms according to this order: LysArg-PQ> PheAla-PQ> PheArg-PQ. The molecular mechanism of action considered a probable nucleophilic attack of the catalytic residue of cruzain (Cys25) on the respective prodrug amide carbonyl carbon, releasing PQ. In order to test this hypothesis, molecular modeling studies were performed, physicochemical parameters and stereoelectronic features calculated by using the AM1 semi-empirical method suggest that the amide carbonyl carbon is favorable for cleavage, where the LysArg showed the most electronic reactive and sterically disposable, leading to the prodrug release and action. In addition, the docking study indicates the occurrence of specific interactions between prodrugs and the pockets S1 and S2 of cruzain through the dipeptides carriers, being the distance between cruzain Cys25 and the amide carbonyl group related to the biological activity of the prodrugs.
Resumo:
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Resumo:
Molecular modeling methodologies were applied to perform preliminary studies concerning the release of active agents from potentially antichagasic and antileishmanial dendrimer prodrugs. The dendrimer was designed having myo-inositol as a core, L-malic acid as a spacer group, and hydroxymethylnitrofurazone (NFOH), 3-hydroxyflavone or quercetin, as active compounds. Each dendrimer presented a particular behavior concerning to the following investigated properties: spatial hindrance, map of electrostatic potential (MEP), and the lowest unoccupied molecular orbital energy (E(LUMO)). Additionally, the findings suggested that the carbonyl group next to the active agent seems to be the most promising ester breaking point. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.
Resumo:
Nitroheterocyclic compounds (NC) were candidate drugs proposed for Chagas disease chemotherapy. In this study, we investigated the complexation of hydroxymethylnitrofurazone (NFOH), a potential antichagasic compound, with alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), Hydroxypropyl-beta-cyclodextrin (HP-beta-CD), Dimethyl-beta-cyclodextrin (DM-beta-CD) and gamma-cyclodextrin (gamma-CD) by fluorescence spectroscopy and molecular modeling studies. Hildebrand-Benesi equation was used to calculate the formation constants of NFOH with cyclodextrins based on the fluorescence differences in the CDs solution. The complexing capacity of NFOH with different CDs was compared through the results of association constant according to the following order: DM-beta-CD > beta-CD > alpha-CD > HP-beta-CD > gamma-CD. Molecular modeling studies give support for the experimental assignments, in favor of the formation of an inclusion complex between cyclodextrins with NFOH. This is an important study to investigate the effects of different kinds of cyclodextrins on the inclusion complex formation with NFOH and to better characterize a potential formulations to be used as therapeutic options for the oral treatment of Chagas disease.
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, in vitro anti-T. cruzi activity assays of nifuroxazide (NX) analogues, such as 5-nitro-2-furfuryliden and 5-nitro-2-theniliden derivatives, were performed. A molecular modeling approach was also carried out to relate the lipophilicity potential ( LP) property and biological activity data. The majority of the NX derivatives showed increased anti-T. cruzi activity in comparison to the reference drug, benznidazole (BZN). Additionally, the 5-nitro-2-furfuryliden derivatives presented better pharmacological profile than the 5-nitro-2-theniliden analogues. The LP maps and corresponding ClogP values indicate that there is an optimum lipophilicity value, which must be observed in the design of new potential anti-T. cruzi agents. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In each of the title compounds, R[Ph(Cl)C=(H)C]TeCl(2), R = nBu (1) and Ph (2), the primary geometry about the Te(IV) atom is a pseudo-trigonal-bipyramidal arrangement, with two Cl atoms in apical positions, and the lone pair of electrons and C atoms in the equatorial plane. As the Te(IV) is involved in two, an intra- and an inter-molecular, Te center dot center dot center dot Cl interactions the coordination geometry might be considered as a Psi-pentagonal bipyramid in each case. In addition, in (2) there is a hint of a Te center dot center dot center dot pi interaction (Te center dot center dot center dot C = 3.911(3) A). The key feature in the crystal structure of both compounds is the formation of supramolecular chains mediated by Te center dot center dot center dot Cl contacts. (1): C(12)H(15)Cl(3)Te, triclinic, P (1) over bar, a = 5.9471 (11), b = 10.7826(22), c = 11.7983(19) angstrom, alpha = 75.416(12), beta = 78.868(13), gamma = 80.902(14)degrees, V = 713.6(2) angstrom(3), Z = 2, R(1) = 0.021; (2): C14HIIC13Te, orthorhombic, Pcab, a=7.7189(10), b=17.415(2), c=21.568(3)angstrom, V = 2899.3(6) angstrom(3), Z = 8, R(1) = 0.027.
Resumo:
Trypanosoma cruzi is the etiological agent of Chagas` disease, a pathogenesis that affects millions of people in Latin America. Here, we report the crystal structure of dihydroorotate dehydrogenase (DHODH) from T cruzi strain Y solved at 2.2 angstrom resolution. DHODH is a flavin mononucleotide containing enzyme, which catalyses the oxidation Of L-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Genetic studies have shown that DHODH is essential for T cruzi survival, validating the idea that this enzyme can be considered an attractive target for the development of antichagasic drugs. In our work, a detailed analysis of T cruzi DHODH crystal structure has allowed us to suggest potential sites to be further exploited for the design of highly specific inhibitors through the technology of structure-based drug design. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Resumo:
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 mu g/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox`s lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.