221 resultados para energy education


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of midrapidity (0 < y < 0.8) neutral pion spectra over an extended transverse momentum range (1 < p(T) < 12 GeV/c) in root s(NN) = 200 GeV Au + Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter or by the Time Projection Chamber via tracking of conversion electron-positron pairs. Our measurements are compared to previously published pi(+/-) and pi(0) results. The nuclear modification factors R(CP) and R(AA) of pi(0) are also presented as a function of p(T). In the most central Au + Au collisions, the binary collision scaled pi(0) yield at high p(T) is suppressed by a factor of about 5 compared to the expectation from the yield of p + p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of J/psi e(+) e(-) at midrapidity and high transverse momentum (pT > 5 GeV/c) in p + p and central Cu + Cu collisions at root s(NN) = 200 GeV. The inclusive J/psi production cross section for Cu + Cu collisions is found to be consistent at high p(T) with the binary collision-scaled cross section for p + p collisions. At a confidence level of 97%, this is in contrast to a suppression of J/psi production observed at lower p(T). Azimuthal correlations of J/psi with charged hadrons in p + p collisions provide an estimate of the contribution of B-hadron decays to J/psi production of 13% +/- 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleus (46)Ti has been studied with the reaction (42)Ca((7)Li,p2n)(46)Ti at a bombarding energy of 31 MeV. Thin target foils backed with a thick Au layer were used. Five new levels of negative parity were observed. Several lifetimes have been determined with the Doppler shift attenuation method. Low-lying experimental negative-parity levels are assigned to three bands with K(pi) = 3, 0, and 4, which are interpreted in terms of the large-scale shell model, considering particle-hole excitations from d(3/2) and s(1/2) orbitals. Shell model calculations were performed using a few effective interactions. However, good agreement was not achieved in the description of either negative- or positive-parity low-lying levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first measurements of the rho(770)(0),K(*)(892),Delta(1232)(++),Sigma(1385), and Lambda(1520) resonances in d+Au collisions at s(NN)=200 GeV, reconstructed via their hadronic decay channels using the STAR detector (the solenoidal tracker at the BNL Relativistic Heavy Ion Collider). The masses and widths of these resonances are studied as a function of transverse momentum p(T). We observe that the resonance spectra follow a generalized scaling law with the transverse mass m(T). The < p(T)> of resonances in minimum bias collisions are compared with the < p(T)> of pi,K, and p. The rho(0)/pi(-),K(*)/K(-),Delta(++)/p,Sigma(1385)/Lambda, and Lambda(1520)/Lambda ratios in d+Au collisions are compared with the measurements in minimum bias p+p interactions, where we observe that both measurements are comparable. The nuclear modification factors (R(dAu)) of the rho(0),K(*), and Sigma(*) scale with the number of binary collisions (N(bin)) for p(T)> 1.2 GeV/c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported in this work the preparation, characterisation and photoluminescence study of poly(methylmethacrylate) (PMMA) thin films co-doped with [Eu(tta)(3)(H(2)O)(2)] and [Tb(acac)(3)(H(2)O)(3)] complexes. Both the composition and excitation wavelength may be tailored to fine-tune the emission properties of these Ln(3+)-beta-diketonate doped polymer films, exhibiting green and red primary colours, as well as intermediate colours. In addition to the ligand-Ln(3+) intramolecular energy transfer, it is observed an unprecedented intermolecular energy transfer process from the (5)D(4) emitting level of the Tb(3+) ion to the excited triplet state T(1) of the tta ligand coordinated to the Eu(3+) ion. The PMMA polymer matrix acts as a co-sensitizer and enhances the overall luminescence intensity of the polymer films. Furthermore, it provides considerable UV protection for the luminescent species and improves the photostability of the doped system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the measurement of the depth of maximum, X(max), of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +/- 35-21) g/cm(2)/decade below 10(18.24) +/- (0.05) eV, and d24 +/- 3 g/cm(2)/ecade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm(2). The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.