232 resultados para enamel matrix derivative
Resumo:
Objectives: The study of a predicted outer membrane leptospiral protein encoded by the gene LIC12690 in mediating the adhesion process. Methods: The gene was cloned and expressed in Escherichia coli BL21 (SI) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and used to assess its ability to activate human umbilical vein endothelial cells (HUVECs). Results: The recombinant leptospiral protein of 95 kDa, named Lp95, activated E-selectin in a dose-dependent fashion but not the intercellular adhesion molecule 1 (ICAM-1). In addition, we show that pathogenic and non-pathogenic Leptospira are both capable to stimulate endothelium E-selectin and ICAM-1, but the pathogenic L. interrogans serovar Copenhageni strain promotes a statistically significant higher activation than the non-pathogenic L. biflexa serovar Patoc (P < 0.01). The Lp95 was identified in vivo in the renal tubules of animal during experimental infection with L. interrogans. The whole Lp95 as well as its fragments, the C-terminal containing the domain of unknown function (DUF), the N-terminal and the central overlap regions bind laminin and fibronectin ECM molecules, being the binding stronger with the DUF containing fragment. Conclusion: This is the first leptospiral protein capable to mediate the adhesion to ECM components and the activation of HUVECS, thus suggesting its participation in the pathogenesis of Leptospira. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Stem cells are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. An important source of adult stem cells is the dental pulp. In dentistry, regenerative strategies are of importance because of hard dental tissue damage especially as result of caries lesions, trauma, or iatrogenic procedures. The regeneration of dental tissues relies on the ability of stem cells to produce extracellular (ECM) proteins encountered in the dental pulp tissue. Thus, the aim of this study was to analyze the expression and distribution of proteins encountered in dental pulp ECM (type I collagen, fibronectin, and tenascin) in stem cells. Methods: Human immature dental pulp stem cells (hIDPSCs) from deciduous (DL-1 and DL-4 cell lines) and permanent (DL-2) teeth were used. The distribution of ECM proteins was observed using the immunofluorescence technique. The gene expression profile was evaluated using reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: Positive reactions for all ECM proteins were observed independently of the hIDPSCs analyzed. Type I collagen appeared less evident in DL-2 than in other hIDPSCs. Fibronectin and tenascin were less clear in DL-4. The RT-PCR reactions showed that type I collagen was lesser expressed in the DL-2 cells, whereas fibronectin and tenascin were similarly expressed in all hIDPSCs. Conclusions: The distribution and expression of ECM proteins differ among the hIDPSCs. These differences seemed to be related to the donor tooth conditions (deciduous or permanent, retained or erupted, and degree of root reabsorption). (J Endod 2010;36:826-831)
Resumo:
Purpose: To assess the effects of three different dental adhesive systems on the formation of secondary root caries, in vitro, with a standardized interfacial gap in a filled cavity model. Methods: 40 sound human molars were selected and randomly assigned to four experimental groups: Clearfil SE Bond (CSEB), Xeno III (X-III), Scotchbond Multi-Purpose Plus (SBMP) and negative control (NC) without an adhesive system. After the standardized Class V cavity preparations on the buccal and lingual surfaces, restorations were placed with resin composite (Filtek Z250) using a standardized interfacial gap, using a 3 x 2 mm piece of 50 mu m metal matrix. The teeth were sterilized with gamma irradiation and exposed to a cariogenic challenge using a bacterial system with Streptococcus mutans. Depth and extension of wall lesions formed and the depth of outer lesions were measured by software coupled with light microscopy. Results: For wall lesion extension the ANOVA test showed differences between groups except between X-HI and SBMP (P= 0.294). The Tukey`s test of confidence intervals indicated smaller values for the CSEB group than for the others. For wall lesion depth the CSEB group also presented the smallest mean values of wall lesion depth when compared to the others (P< 0.0001) for all comparisons using Tukey`s test. Regarding outer lesion depth, all adhesives showed statistically similar behavior. SEM evaluation of the morphologic appearance of caries lesions confirmed the statistical results showing small caries lesion development for cavities restored with CSEB adhesive system, which may suggest that this adhesive system interdiffusion zone promoted a good interaction with subjacent dentin protecting the dental tissues from recurrent caries. (Am J Dent 2010;23:93-97).
Resumo:
This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel`s resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.
Resumo:
Although CO(2) laser irradiation can decrease enamel demineralisation, it has still not been clarified which laser wavelength and which irradiation conditions represent the optimum parameters for application as preventive treatment. The aim of the present explorative study was to find low-fluence CO(2) laser (lambda = 10.6 mu m) parameters resulting in a maximum caries-preventive effect with the least thermal damage. Different laser parameters were systematically evaluated in 3 steps. In the first experiment, 5 fluences of 0.1, 0.3, 0.4, 0.5 and 0.6 J/cm(2), combined with high repetition rates and 10 mu s pulse duration, were chosen for the experiments. In a second experiment, the influence of different pulse durations (5, 10, 20, 30 and 50 mu s) on the demineralisation of dental enamel was assessed. Finally, 3 different irradiation times (2, 5 and 9 s) were tested in a third experiment. In total, 276 bovine enamel blocks were used for the experiments. An 8-day pH-cycling regime was performed after the laser treatment. Demineralisation was assessed by lesion depth measurements with a polarised light microscope, and morphological changes were assessed with a scanning electron microscope. Irradiation with 0.3 J/cm(2), 5 mu s, 226 Hz for 9 s (2,036 overlapping pulses) increased caries resistance by up to 81% compared to the control and was even significantly better than fluoride application (25%, p < 0.0001). Scanning electron microscopy examination did not reveal any obvious damage caused by the laser irradiation. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram. LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
This study investigated whether subablative-pulsed CO(2) laser (10.6 mu m) irradiation, using fluences lower than 1 J/cm(2), was capable of reducing enamel acid solubility. Fifty-one samples of bovine dental enamel were divided into three groups: control group, which was not irradiated (CG); group laser A (LA) irradiated with 0.3 J/cm ; and group laser B (LB) irradiated with 0.7 J/cm(2). After irradiation, the samples were subjected to demineralization in an acetate buffer solution and were then analyzed by SEM. A finite-element model was used to calculate the temperature increase. The calcium and phosphorous content in the demineralization solution were measured with an ICP-OES. ANOVA and the t-test pairwise comparison (p < 0.016) revealed that LB showed significantly lower mean Ca and P content values in the demineralization solution than other groups. A reduction in the enamel solubility can be obtained with pulsed CO(2) laser irradiation (0.7 J/cm(2), 135 mJ/pulse, 74 Hz, 100 mu s) without any surface photomodification and a less than 2 degrees C temperature increase at a 3-mm depth from the surface.
Resumo:
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Oncogenic Wnt/beta-catenin signaling occurs in numerous types of cancers, but little is known about the role of the Wnt protein family member, WNT-5A, in lip carcinogenesis. The aim of this study was to investigate WNT-5A, beta-catenin, and matrix metalloproteinase (MMP)-3 protein expression in actinic cheilitis (AC), and lip squamous cell carcinoma (LSCC). Methods: Twenty-one cases of AC, and fifty-one cases of LSCC were analyzed, with normal lip mucosa used as a control. Qualitative and semi-quantitative analyses of WNT-5A, beta-catenin, and MMP-3 immunostaining pattern and cellular distribution were performed. Results: WNT-5A was observed in more than 50% of the cells, scattered in all layers of AC, in contrast to the absence of immunostaining in normal lip mucosa. AC presented a higher level of WNT-5A expression than LSCC (P = 0.0289, Fisher test), while MMP-3 immunoexpression was statistically more significant in LSCC than in AC (P = 0.0285, Fisher test). Immunolabeling of beta-catenin protein was differentially distributed between samples; the majority of AC cases (61.90%) demonstrated a membranous-cytoplasmic pattern, while a considerable number of LSCC cases (29.41%) revealed a cytoplasmic pattern, instead of the usual membranous pattern. Conclusions: The present results suggest that WNT-5A may be an important marker during initial events of AC malignant transformation, in which non-canonical and canonical Wnt/beta-catenin signaling pathways could be involved. Additionally, WNT-5A might recruit other events in LSCC, such as MMP-3 protein synthesis, as its presence is increased in established malignant processes without beta-catenin dependency.
Resumo:
Objectives: To analyze the expression of tenascin, fibronectin, collagens I and III, osteonectin, and bone morphogenetic protein 4 (BMP4) in the extracellular matrix of pulp tissue in primary teeth during physiologic root resorption. Method and Materials: Eighteen teeth were decalcified and equally distributed into 3 groups (group I, teeth with two-thirds root length; group II, teeth with one-third root length; and group III, teeth lacking the root). Results: Immunohistochemical analysis showed that all the proteins were expressed. Tenascin, collagen I, and osteonectin showed strong and broad reactivity in group I, with weaker and rare reactivity in groups II and III. The expression of fibronectin, collagen III, and BMP4 did not vary with root resorption phase. Conclusion: The expression of tenascin, collagen I, and osteonectin was reduced in the extracellular matrix and odontoblasts during root resorption. This fact may be related to the decreasing pulp response to damage and treatment during the progression of root resorption. (Quintessence Int 2009; 40: 553-558)
Resumo:
Background and Objectives: Er:YAG laser has been used for caries removal and cavity preparation, using ablative parameters. Its effect on the margins of restorations submitted to cariogenic challenge has not yet been sufficiently investigated. The aim of this study was to assess the enamel adjacent to restored Er:YAG laser-prepared cavities submitted to cariogenic challenge in situ, under polarized light microscopy. Study Design/Materials and Methods: Ninety-one enamel slabs were randomly assigned to seven groups (n = 13): I, II, III-Er:YAG laser with 250 mJ, 62.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; IV, V, VI-Er:YAG laser with 350 mJ, 87.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; VII-High-speed handpiece (control). Cavities were restored and the restorations were polished. The slabs were fixed to intra-oral appliances, worn by 13 volunteers for 14 days. Sucrose solution was applied to each slab six times per day. Samples were removed, cleaned, sectioned and ground to polarized light microscopic analysis. Demineralized area and inhibition zone width were quantitatively assessed. Presence or absence of cracks was also analyzed. Scores for demineralization and inhibition zone were determined. Results: No difference was found among the groups with regard to demineralized area, inhibition zone width, presence or absence of cracks, and demineralization score. Inhibition zone score showed difference among the groups. There was a correlation between the quantitative measures and the scores. Conclusion: Er:YAG laser was similar to high-speed handpiece, with regard to alterations in enamel adjacent to restorations submitted to cariogenic challenge in situ. The inhibition zone score might suggest less demineralization at the restoration margin of the irradiated substrates. Correlation between the quantitative measures and scores indicates that score was, in this case, a suitable complementary method for assessment of caries lesion around restorations, under polarized light microscopy. Lasers Surg. Med. 40:634-643, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Background and Objective: Substance P may play a role in the pathogenesis of periodontal disease; however, its mechanisms of modulation are not clear. This study evaluated the effect of two concentrations of Substance P on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in cultured human gingival fibroblasts. Materials and Methods: Fibroblasts were stimulated for 48 h with 10(-4) or 10(-9) m Substance P; untreated fibroblasts served as controls. The expression of MMP-1, -2, -3, -7 and -11 and of TIMP-1 and -2 was evaluated using real-time polymerase chain reaction and western blotting. Resulsts: There was a significant, concentration-dependent stimulatory effect of Substance P on MMP-1, -2, -3 and -7 and TIMP-2 gene expression (p < 0.05), and a probable effect on MMP-11 (p = 0.06). At the higher concentration (10(-4) m Substance P), MMP-1, -2, -3, -7 and -11 and TIMP-2 showed the greatest up-regulation; at the lower concentration (10(-9) (M) Substance P), MMP-1, -3 and -7 and TIMP-2 exhibited diminished up-regulation, with MMP-2 and -11 showing down-regulation (p < 0.05). Expression of TIMP-1 was not affected by Substance P (p > 0.05). Western blotting confirmed that Substance P up-regulated MMP-1, -2, -3 and -11 and TIMP-2. MMP-1, -3 and -11 and TIMP-2 showed greater up-regulation at the higher Substance P concentration and diminished up-regulation at the lower concentration. MMP-2 was up-regulated to a similar degree at both Substance P concentrations. Conclusion: In gingival fibroblast cells, Substance P at the higher concentration (10(-4) m) induced greater up-regulation of MMP-1, -3 and -11 and TIMP-2 expression, but at the lower concentration (10(-9) (M)) induced diminished up-regulation, which may represent a mechanism for modulating periodontal breakdown.