109 resultados para compositional geometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary teeth were analyzed by micro-SRXRF. The aim of this study was to determine the elemental distribution of lead and calcium in different regions of primary incisor of children living in a notoriously contaminated area (Santo Amaro da Purificacao, Bahia State, Brazil). The measurements were performed in standard geometry of 45 incidence, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The aim of this study was to evaluate the root canal preparation in flat-oval canals treated with either rotary or self-adjusting file (SAF) by using micro-tomography analysis. Methods: Forty mandibular incisors were scanned before and after root canal instrumentation with rotary instruments (n = 20) or SAF (n = 20). Changes in canal volume, surface area, and cross-sectional geometry were compared with preoperative values. Data were compared by independent sample t test and chi(2) test between groups and paired sample t test within the group (alpha = 0.05). Results: Overall, area, perimeter, roundness, and major and minor diameters revealed no statistical difference between groups (P > .05). In the coronal third, percentage of prepared root canal walls and mean increases of volume and area were significantly higher with SAF (92.0%, 1.44 +/- 0.49 mm(3), 0.40 +/- 0.14 mm(2), respectively) than rotary instrumentation (62.0%, 0.81 +/- 0.45 mm(3), 0.23 +/- 0.15 mm2, respectively) (P < .05). SAF removed dentin layer from all around the canal, whereas rotary instrumentation showed substantial untouched areas. Conclusions: In the coronal third, mean increases of area and volume of the canal as well as the percentage of prepared walls were significantly higher with SAF than with rotary instrumentation. By using SAF instruments, flat-oval canals were homogenously and circumferentially prepared. The size of the SAF preparation in the apical third of the canal was equivalent to those prepared with #40 rotary file with a 0.02 taper. (J Endod 2011;37:1002-1007)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Aim To investigate the internal and external anatomy of extracted human mandibular canines with two roots and two distinct canals using micro-computed tomography (mu CT). Methodology Fourteen two-rooted human mandibular canines were scanned using a high-resolution mu CT system (SkyScan 1174v2; SkyScan N.V., Kontich, Belgium). The images were processed to evaluate the size of the roots, the furcation regions, the presence of accessory canals, the mean distances between several anatomical landmarks, the position of the apical foramina, the direction of root curvatures, the cross-sectional appearances (SMI index), the volume and surface areas of the root canals. Results Root bifurcation was located in both apical (44%, n = 6) and middle (58%, n = 8) thirds of the root. The size of the buccal and lingual roots was similar in 29% of the sample. From a buccal view, no curvature towards the lingual or buccal direction occurred in either roots. From a proximal view, no straight lingual root occurred. In both views, S-shaped roots were found in 21% of the specimens. Location of the apical foramen varied considerably, tending to the mesio-buccal aspect of both roots. Lateral and furcation canals were observed mostly in the cervical third in 29% and 65% of the sample, respectively. The structure model index (SMI) index ranged from 1.87 to 3.86, with a mean value of 2.93 +/- 0.46. Mean volume and area of the root canals were 11.52 +/- 3.44 mm3 and 71.16 +/- 11.83 mm2, respectively. Conclusions The evaluation of two-rooted mandibular canines revealed that bifurcations occurred in the apical and middle third. S-shaped roots were found in 21% of the specimens. Mean volume, surface area and SMI index of the root canals were 11.52 mm3, 71.16 mm2 and 2.93, respectively.