254 resultados para anti-TNF-alpha agent
Resumo:
DA SILVA, A. S. R., J. R. PAULI, E. R. ROPELLE, A. G. OLIVEIRA, D. E. CINTRA, C. T. DE SOUZA, L. A. VELLOSO, J. B. C. CARVALHEIRA, and M. J. A. SAAD. Exercise Intensity, Inflammatory Signaling, and Insulin Resistance in Obese Rats. Med. Sci. Sports Exerc., Vol. 42, No. 12, pp. 2180-2188, 2010. Purpose: To evaluate the effects of intensity of exercise on insulin resistance and the expression of inflammatory proteins in the skeletal muscle of diet-induced obese (DIO) rats after a single bout of exercise. Methods: In the first exercise protocol, the rats swam for two 3-h bouts, separated by a 45-min rest period (with 6 h in duration-DIO + EXE), and in the second protocol, the rats were exercised with 45 min of swimming at 70% of the maximal lactate steady state-MLSS (DIO + MLSS). Results: Our data demonstrated that both protocols of exercise increased insulin sensitivity and increased insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 and serine phosphorylation of protein kinase B in the muscle of DIO rats by the same magnitude. In parallel, both exercise protocols also reduced protein tyrosine phosphatase 1B activity and insulin receptor substrate 1 serine phosphorylation, with concomitant reduction in c-jun N-terminal kinase and I kappa B kinase activities in the muscle of DIO rats in a similar fashion. Conclusions: Thus, our data demonstrate that either exercise protocols with low intensity and high volume or exercise with moderate intensity and low volume represents different strategies to restore insulin sensitivity with the same efficacy.
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naive Nellore calves infected with Haemonchus placei, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 H. placei 13 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-gamma, MCP-1, lysozyme, pepsinogen and TNF-alpha genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-alpha were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-alpha was down-regulated (p < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (p > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background Et aims: To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal. macrophages, hematopoiesis and nutritional status of mice. Methods: Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. Results: The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P < 0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well. as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal. macrophages obtained from the -GLN group (P < 0.05). Conclusion: These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
The spleen is a secondary lymphoid organ that harbours a variety of cells such as T and B lymphocytes and antigen-presenting cells important to immune response development. In this study, we evaluated the impact of spleen removal in the immune response to experimental Trypanosoma cruzi infection. C57BL/6 mice were infected with Y strain of the parasite and infection was followed daily. Mice that underwent splenectomy had fewer parasites in peripheral blood at the peak of infection; however, mortality was increased. Histological analysis of heart and liver tissues revealed an increased number of parasites and inflammatory infiltrates at these sites. Spleen removal was associated with reduction in IFN-gamma and TNF-alpha production during infection as well as with a decrease in specific antibody secretion. Haematological disorders were also detected. Splenectomized mice exhibited severe anaemia and decreased bone marrow cell numbers. Our results indicate that spleen integrity is critical in T. cruzi infection for the immune response against the parasite, as well as for the control of bone marrow haematological function.
Resumo:
Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappa B is kept from binding to its consensus sequence by the inhibitor I kappa B alpha, which retains NF-kappa B in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappa B alpha is rapidly degraded and NF-kappa B is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappa B. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-a by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappa B alpha and NF-kappa B, NF-kappa B activation and TNF-alpha mRNA and protein synthesis inmacrophages. Two-month-old male BALB/Cmice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-a mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappa B activation after LPS stimulation. These results led us to conclude that PEM changes NF-kappa B signalling pathway in macrophages to LPS stimulus.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.
Resumo:
Infants who are breast-fed have been shown to have a lower incidence of certain infectious diseases compared with formula-fed infants. Glutamine is one of the most abundant amino acids found in maternal milk and it is essential for the function of immune system cells such as macrophages. The purpose of this study was to investigate the effect of glutamine supplementation on the function of peritoneal macrophages and on hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guerin (BCG). Mice were wearied at 14 d of age and distributed to 2 groups and fed either a glutamine-free diet (n = 16) or a glutamine-supplemented diet (+Gln (n = 16). Both diets were isonitrogenous (with addition of a mixture of nonessential amino acids) and isocaloric. At d 21, 2 subgroups of mice (n = 16) were intraperitoneally injected with BCG and all mice were killed at d 28. Plasma, muscle and liver glutamine concentrations and muscle glutamine synthetase activity were not affected by diet or inoculation with BCG. The +GIn diet led to increased leukocyte and lymphocyte counts in the peripheral blood (P < 0.05) and granulocyte and lymphocyte counts in the bone marrow and spleen (P < 0.05). The +GIn diet increased spreading and adhesion capacities, hydrogen peroxide, nitric oxide, and tumor necrosis factor-alpha (TNF alpha) syntheses and the phagocytic and fungicidal activity of peritoneal macrophages (P < 0.05). The interaction between the +GIn diet and BCG inoculation increased the area under the curve of interleukin (IL)-1 beta and TNF alpha syntheses (P < 0.05). In conclusion, the intake of glutamine increases the function of peritoneal macrophages and hemopoiesis in early-weaned and BCG-inoculated mice. These data have important implications for the design of breast milk substitutes for human infants.
Resumo:
This study evaluated the participation of mu-opioid-receptor activation in body temperature (T-b) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic D-Phe-Cys-Try-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 0.1-1.0 mu g) reduced fever induced by LPS (5.0 mu g/kg) but did not change Tb at ambient temperatures of either 20 C or 28 C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0 -10.0 mg/kg, 3.0 -30.0 mu g, and 1 -100 ng, respectively) produced a dose-dependent increase in Tb. Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 mu g icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 mu g), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2 alpha) (500.0 ng) but not the fever induced by IL-1 beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2 alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE2 levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1 beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.
Resumo:
In the present study, an acidic PLA(2), designated BI-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000 Da and pl was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9 U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-alpha, IL-1 beta and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA2 induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
To determine the ability of probiotic lactobacilli to improve the treatment of vulvovaginal candidiasis (VVC) using a randomized, double-blind and placebo-controlled trial. Fifty-five women diagnosed with VVC by vaginal discharge positive for Candida spp. (according to culture method) associated with at least one of the symptoms (itching and burning vaginal feeling, dyspareunia and dysuria), were treated with single dose of fluconazole (150 mg) supplemented every morning for the following 4 weeks with two placebo or two probiotic capsules (containing Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14). At 4 weeks, the probiotic treated group showed significantly less vaginal discharge associated with any of the above mentioned symptoms (10.3%vs 34.6%; P = 0.03) and lower presence of yeast detected by culture (10.3%vs 38.5%; P = 0.014). This study has shown that probiotic lactobacilli can increase the effectiveness of an anti-fungal pharmaceutical agent in curing disease. This novel finding of probiotic lactobacilli augmenting the cure rate of yeast vaginitis, not only offers an alternative approach to a highly prevalent condition that adversely affects the quality of life of women around the world, but also raises the question of how this combination works.
Resumo:
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.